Selection of phage display peptides against Pasteurella multocida using suspension method of biopanning


197 / 244

Authors

  • KRITIKA DHIAL Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 061 India
  • MANDEEP SHARMA Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 061 India
  • SUBHASH VERMA Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 061 India
  • GEETANJALI SINGH Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 061 India
  • SANJEEV KUMAR Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 061 India
  • VIPIN KUMAR GUPTA Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 061 India

https://doi.org/10.56093/ijans.v92i12.123277

Keywords:

Biopanning, Indirect ELISA, Pasteurella multocida, Phage display peptide

Abstract

  1. multocida contain various surface-associated antigens that could be used as a target for both therapeutics as well as diagnostics. The current study was planned to select ligands using Ph.D.-12 phage display library. This library was amplified and subjected to the alternate selection/subtraction methodology of biopanning using the suspension method in which alternate rounds of positive selection against P. multocida and negative selection against Haemophilus influenzae and Actinobacillus lignieresii were performed. After completing biopanning, out of 48 selected phages, 16 clonal phages were selected for indirect phage ELISA to check their binding efficiency with P. multocida. Out of these 16, five clonal phages bound their target with high intensity giving higher OD values at 450 nm and their binding efficiency was compared with closely related Actinobacillus lignieresii and Hemophilus influenzae using 107 pfu/ml at 450 nm wavelength which was found to be less against these bacteria.

Downloads

Download data is not yet available.

References

Bazan J, Całkosiński I and Gamian A. 2012. Phage display-A powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Human Vaccines and Immunotherapeutics 8(12): 1817-28. DOI: https://doi.org/10.4161/hv.21703

Cesareni G. 1992. Peptide display on filamentous phage capsids An new powerful tool to study protein-ligand interaction. FEBS Letters 307(1): 66-70. DOI: https://doi.org/10.1016/0014-5793(92)80903-T

Chen Y, Guo G, Sun E, Song J, Yang L, Zhu L, Liang W, Hua L, Peng Z, Tang X and Chen H. 2019. Isolation of a T7- Like lytic Pasteurella bacteriophage vB_PmuP_PHB01 and its potential use in therapy against Pasteurella multocida infections. Viruses 11(1): 86. DOI: https://doi.org/10.3390/v11010086

Chen Y, Sun E, Song J, Yang L and Wu B. 2018. Complete genome sequence of a novel T7-like bacteriophage from a Pasteurella multocida capsular type A isolate. Current Microbiology 75(5): 574-79. DOI: https://doi.org/10.1007/s00284-017-1419-3

Cho W, Fowler J D and Furst E M. 2012. Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals. Langmuir 28(14): 6013-20. DOI: https://doi.org/10.1021/la300522g

De Alwis M C L. 1996. Haemorrhagic septicaemia: clinical and epidemiological features of the disease. In International Workshop on Diagnosis and Control of HS, Bali, Indonesia. pp. 28-30.

de Haard H J, van Neer N, Reurs A, Hufton S E, Roovers R C, Henderikx P, de Bruı̈ne A P, Arends J W and Hoogenboom H R. 1999. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. Journal of Biological Chemistry 274(26): 18218-30. DOI: https://doi.org/10.1074/jbc.274.26.18218

Dinos G P. 2017. The macrolide antibiotic renaissance. British Journal Pharmacology 174(18): 2967-83. DOI: https://doi.org/10.1111/bph.13936

Dutta J, Rathore B S, Mullick S G, Singh R and Sharma G C. 1990. Epidemiological studies on occurrence of haemorrhagic septicaemia in India. Indian Veterinary Journal 67(10): 893- 99.

El-Jakee J K, Ali S S, El-Shafii S A, Hessain A M, Al-Arfaj A A and Mohamed M I. 2016. Comparative studies for serodiagnosis of haemorrhagic septicaemia in cattle sera. Saudi Journal of Biological Sciences 23(1): 48-53. DOI: https://doi.org/10.1016/j.sjbs.2015.06.011

Gallop M A, Barrett R W, Dower W J, Fodor S P and Gordon E M. 1994. Applications of combinatorial technologies to drug discovery. Journal of Medicinal Chemistry 37(9): 1233-51. DOI: https://doi.org/10.1021/jm00035a001

Garcia L S. 2010. Clinical Microbiology Procedures Handbook (Vol. 1). American Society for Microbiology Press. DOI: https://doi.org/10.1128/9781555817435

Harper M, Boyce J D and Adler B. 2006. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters 265(1): 1-10. DOI: https://doi.org/10.1111/j.1574-6968.2006.00442.x

Hess G T, Cragnolini J J, Popp M W, Allen M A, Dougan S K and Spooner E. 2012. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjugate Chemistry 23: 1478-87. DOI: https://doi.org/10.1021/bc300130z

Hoogenboom H R, de Bruıne A P, Hufton S E, Hoet R M, Arends J W and Roovers R C. 1998. Antibody phage display technology and its applications. Immunotechnology 4(1): 1-20. DOI: https://doi.org/10.1016/S1380-2933(98)00007-4

Hyman P. 2019. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 12(1): 35. DOI: https://doi.org/10.3390/ph12010035

Lakzaei M, Rasaee M J, Fazaeli A A and Aminian M. 2019. A comparison of three strategies for biopanning of phage-scFv library against diphtheria toxin. Journal of Cellular Physiology 234(6): 9486-94. DOI: https://doi.org/10.1002/jcp.27636

Lam K S, Salmon S E, Hersh E M, Hruby V J, Kazmierski W M and Knapp R J. 1991. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354(6348): 82- 84. DOI: https://doi.org/10.1038/354082a0

May B J, Zhang Q, Li L L, Paustian M L, Whittam T S and Kapur V. 2001. Complete genomic sequence of Pasteurella multocida, Pm70. Proceedings of the National Academy of Sciences 98(6): 3460-65. DOI: https://doi.org/10.1073/pnas.051634598

Panagides N, Zacchi L F, De Souza M J, Morales R A, Karnowski A, Liddament M T, Owczarek C M, Mahler S M, Panousis C, Jones M L and Fercher C. 2022. Evaluation of phage display biopanning strategies for the selection of anti-cell surface receptor antibodies. International Journal of Molecular Sciences 23(15): 8470. DOI: https://doi.org/10.3390/ijms23158470

Qureshi S, Saxena H M, Imam N, Kashoo Z, Sharief Banday M, Alam A, Malik M Z, Ishrat R and Bhat B. 2018. Isolation and genome analysis of a lytic Pasteurella multocida Bacteriophage PMP‐GAD‐IND. Letters in Applied Microbiology 67(3): 244- 53. DOI: https://doi.org/10.1111/lam.13010

Smith G P. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705): 1315-17. DOI: https://doi.org/10.1126/science.4001944

Townsend K M, Frost A J, Lee C W, Papadimitriou J M and Dawkins H J. 1998. Development of PCR assays for species-and type-specific identification of Pasteurella multocida isolates. Journal of Clinical Microbiology 36(4): 1096-1100. DOI: https://doi.org/10.1128/JCM.36.4.1096-1100.1998

Valadon P and Scharff M D. 1996. Enhancement of ELISAs for screening peptides in epitope phage display libraries. Journal of Immunological Methods 97(1-2): 171-79. DOI: https://doi.org/10.1016/0022-1759(96)00133-0

Verma S, Sharma M, Katoch S, Verma L, Kumar S, Dogra V, Chahota R, Dhar P and Singh G. 2013. Profiling of virulence associated genes of Pasteurella multocida isolated from cattle. Veterinary Research Communication 37(1): 83-89. DOI: https://doi.org/10.1007/s11259-012-9539-5

Downloads

Submitted

2022-04-12

Published

2022-12-15

Issue

Section

Articles

How to Cite

DHIAL, K., SHARMA, M., VERMA, S., SINGH, G., KUMAR, S., & GUPTA, V. K. (2022). Selection of phage display peptides against Pasteurella multocida using suspension method of biopanning. The Indian Journal of Animal Sciences, 92(12), 1386–1390. https://doi.org/10.56093/ijans.v92i12.123277
Citation