Prevalence and characterisation of antimicrobial resistance pattern of ESBLproducing Escherichia coli isolated from poultry in Banaskantha district, India


298 / 299

Authors

  • MITUL A PATEL Narsinhbhai Patel Dental College, Sankalchand Patel University, Saduthala- Kamana-Udalpur Rd, SPCE Campus, Visnagar, Gujarat
  • APARNA PANDEY Narsinhbhai Patel Dental College, Sankalchand Patel University, Saduthala- Kamana-Udalpur Rd, SPCE Campus, Visnagar, Gujarat
  • SANDIP S PATEL Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat
  • ARUN C PATEL Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat
  • SUSHIL K MOHAPATRA Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat
  • HARSHAD C CHAUHAN Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat
  • KISHAN K SHARMA Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat
  • BHAVESH I PRAJAPATI Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat
  • BHARATSINGH S CHANDEL Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat

https://doi.org/10.56093/ijans.v93i6.126892

Keywords:

Antibiotics, Antimicrobial resistance, E. coli, India, PCR, Poultry

Abstract

Resistance to antimicrobial drugs among bacterial pathogens is an emerging problem. Bacterial resistance to beta-lactam antibiotics has grown significantly. The present study aims at isolation, identification, phenotypic confirmation of ESBL-producer, and antimicrobial resistance pattern of Escherichia coli isolated from poultry faecal samples. A total of 120 samples were collected from 30 different poultry farms in Banaskantha district. 108 out of 120 samples were confirmed as E. coli using microscopic, biochemical tests, followed by species-specific 16S rRNA PCR; among them, broiler 65 (92.85%) and layer 43 (86%) were confirmed as E. coli. The phenotypic ESBL-production was detected in 54 (50%) isolates with broiler (29.62%) and layer (20.28%) farms. The antibiotic sensitivity pattern revealed the highest resistance was identified against Cefpodoxime 100%, followed by Tetracycline 97.22%, Amoxicillin + Clavulanic acid 95.37%, Nalidixic Acid 94.44%, Enrofloxacin 91.66%, Co-trimaxazole 90.74%, Ampicillin 78.70% and Amikacin 57.40%. The 95.37% and 77.77% isolates showed susceptibility to Imipenem and Cefoxitin, respectively. Thus, it may be concluded that in the current study, isolates revealed multidrug resistance against antimicrobial agents commonly used in veterinary and human practice. This implies that the existing practice of misuse and improper use of antibiotics in poultry accelerates antimicrobial resistance in poultry.

Downloads

Download data is not yet available.

References

Alvarez M, Sanz S, Olarte C, Hidalgo-Sanz R, Carvalho I, Fernandez-Fernandez R, Campana-Burguet A, Latorre- Fernandez J, Zarazaga M and Torres C. 2022. Antimicrobial Resistance in Escherichia coli from the Broiler Farm Environment, with Detection of SHV-12-Producing Isolates. Antibiotics 11(4): 444. DOI: https://doi.org/10.3390/antibiotics11040444

Anago E, Ayi-Fanou L, Akpovi C D, Hounkpe W B, Tchibozo M A, Bankole H S and Sanni A. 2015. Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. Annals of Clinical Microbiology and Antimicrobials 14 (1): 1–5. DOI: https://doi.org/10.1186/s12941-014-0061-1

Andrews B, Joshi S, Swaminathan R, Sonawane J and Shetty K. 2018. Prevalence of Extended Spectrum Β-Lactamase (ESBL) Producing Bacteria among the Clinical Samples in and around a Tertiary Care Centre in Nerul, Navi Mumbai, India. International Journal of Current Microbiology and Applied Sciences 7(03): 3402–09. DOI: https://doi.org/10.20546/ijcmas.2018.703.392

Aworh M K, Jacob K P, Kwaga, Rene S, Hendriksen, Emmanuel C and Okolocha T S. 2021. Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrobial Resistance and Infection Control 10 (58): 1–13. DOI: https://doi.org/10.1186/s13756-021-00930-x

Badr H, Reda R M, Hagag N M, Kamel E, Elnomrosy S M, Mansour A I, Shahein M A, Ali S F and Ali H R. 2022. Multidrug-resistant and genetic characterization of extended-spectrum beta-lactamase-producing E. coli recovered from chickens and humans in Egypt. Animals 12(3): 346. DOI: https://doi.org/10.3390/ani12030346

Bauer A W, Kirby W M M, Sherris J C and Toun M. 1966. Antibiotic susceptibility testing using standard single disc diffusion method. American Journal of Clinical Pathology 45: 493–96. DOI: https://doi.org/10.1093/ajcp/45.4_ts.493

Blaak H, van Hoek H A M, Hamidjaja R A, Rojemarijn Q J, Kerkhofde H L, De Roda H A and Schets F M. 2015. Distribution, numbers, and diversity of esbl-producing E. coli in the poultry farm environment. PLoS One 10(8): 1–23. DOI: https://doi.org/10.1371/journal.pone.0135402

Boeckel V, Thomas P, Joao P, Reshma S, Cheng Z, Julia S, Criscuolo N G, Marius G, Sebastian B and Ramanan L. 2019. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 365 (6459): 1–5. DOI: https://doi.org/10.1126/science.aaw1944

Chowdhury R, Bardhan S, Banerjee P A, Batabyal S N, Joardar G P, Bandyopadhyay M S, Dutta, T K, Sar T K and Samanta I. 2021. Comparative occurrence of ESBL/AmpC beta-lactamase-producing Escherichia coli and Salmonella in contract farm and backyard broilers. Letters in Applied Microbiology 74(1): 53–62. DOI: https://doi.org/10.1111/lam.13581

Fratamico P M, Bagi L K and Pepe T. 2000. A multiplex polymerase chain reaction assay for rapid detection and identification of Escherichia coli O157:H7 in foods and bovine feces. Journal of Food Protection 63(8): 1032–37. DOI: https://doi.org/10.4315/0362-028X-63.8.1032

Godambe L P, Bandekar J and Shashidhar R. 2017. Species specific PCR based detection of Escherichia coli from Indian foods. Springer-verlag Berlin Heidelberg 7(2): 1–5. DOI: https://doi.org/10.1007/s13205-017-0784-8

Gundran R S, Cardenio P A, Villanueva M A, Sison F B, Carolyn C, Benigno K K, Duangporn P and Veerasak P. 2019. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Veterinary Research 15(1): 227–35. DOI: https://doi.org/10.1186/s12917-019-1975-9

Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y, Yagi M, Nishio T, Kanda T, Kawamori F, Sugiyama K, Masuda T, Hara-kudo Y and Ohashi N. 2012. Prevalence of extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae in food-producing animals. Journal of Veterinary and Medical Science 74(2): 189–95. DOI: https://doi.org/10.1292/jvms.11-0372

Hosain M Z, Kabir S M and Kamal M M. 2021. Antimicrobial uses for livestock production in developing countries. Veterinary World 14(1): 210–21. DOI: https://doi.org/10.14202/vetworld.2021.210-221

Ibrahim R A, Cryer T L, Lafi S Q, Basha E A, Good L and Tarazi Y H. 2019. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Veterinary Research 15(1): 1–16. DOI: https://doi.org/10.1186/s12917-019-1901-1

Indrawatia A, Khoiranib K, Setiyaningsiha S, Affifa U, Safikaa and Ningrumc S G. 2021. Detection of tetracycline resistance genes among Escherichia coli isolated from layer and broiler breeders in West Java, Indonesia. Tropical Animal Science Journal 44(3): 267–72. DOI: https://doi.org/10.5398/tasj.2021.44.3.267

Jacoby G A. 2009. AmpC-Lactamases. Clinical Microbiology Reviews 22(1): 161. DOI: https://doi.org/10.1128/CMR.00036-08

Kettani H M, Lahlou F A, Diawara I, El Adouzi Y, Marnaoui R, Benmessaoud R and Smyej I. 2021. Antibiotic resistance pattern of extended spectrum beta lactamase producing Escherichia coli isolated from patients with urinary tract infection in Morocco. Frontiers Cell Infection Microbiology 11(700701): 1–7. DOI: https://doi.org/10.3389/fcimb.2021.720701

Kharate A, Awati B, Patil N A, Ravindra B, Jagannath Rao, Vinay T, Mallinath K C, Prahlad U, Mumtaz H, Suryakanth P, Lina D, Kavita K, Bhosle A and Gopala L. 2019. Phenotypic characterization of ESBL Escherichia coli in poultry from North-Eastern region of Karnataka. Journal of Experimental Zoology 22(1): 435–40.

Lee Y J, Kim K S, Kim J H and Tak R B. 2004. Salmonella gallinarum gyrA mutations associated with fluoroquinolone resistance. Avian Pathology 33(2): 251–7. DOI: https://doi.org/10.1080/0301945042000195759

Mahadewaswami R, Kolhe R, Bhong C, Mhase P, Jadhav S, Lonkar V and Bhave S. 2021. Characterization of pig and poultry origin Escherichia coli for beta-lactamase type antimicrobial resistance. Journal of Animal Research 11(4): 619–25. DOI: https://doi.org/10.30954/2277-940X.04.2021.7

Mandal A K, Talukder S, Hasan M M, Tasmim S T, Parvin M S, Ali M Y and Islam M T. 2022. Epidemiology and antimicrobial resistance of Escherichia coli in broiler chickens, farmworkers, and farm sewage in Bangladesh. Veterinary Medicine and Science 8(1): 187–99. DOI: https://doi.org/10.1002/vms3.664

Manyi-Loh C, Mamphweli S, Meyer E and Okoh A. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 23(4): 1–48. DOI: https://doi.org/10.3390/molecules23040795

Ogunleye A O, Oyekunle M A and Sonibare A O. 2008. Multidrug resistant Escherichia coli isolates of poultry origin in Abeokuta, South Western Nigeria. Veterinarski Arhiv 78(6): 501–9.

Olowe O A, Adewumi O, Odewale G, Ojurongbe O and Adefioye O J. 2015. Phenotypic and Molecular characterisation of extended-spectrum beta-lactamase producing Escherichia coli obtained from animal fecal samples in Ado Ekiti, Nigeria. Journal of Environmental and Public Health Article 1–7. DOI: https://doi.org/10.1155/2015/497980

Osei F B, Boamah V E, Boakye Y D, Agyare C and Abaidoo R C. 2021. Antibiotic resistance of bacteria isolated from water supplies used in poultry production in Ashanti region of Ghana. The Open Microbiology Journal 15: 7–15. DOI: https://doi.org/10.2174/1874285802115010007

Patel M A, Pandey A, Patel A C, Patel S S, Chauhan H C, Shrimali M D, Patel P A, Mohapatra S K and Chandel B S. 2022. Whole genome sequencing and characteristics of extended-spectrum beta-lactamase producing Escherichia coli isolated from poultry farms in Banaskantha, India. Frontiers in Microbiology 13(996214): 1–12. DOI: https://doi.org/10.3389/fmicb.2022.996214

Quinn J P, Carter M E, Markey B K and Carter G R. 2002. Clinical Veterinary Microbiology, pp. 61-63. (4th ed). Harcourt Publishers Ltd, London, UK.

Racewicz P, Majewski M, Biesiada H, Nowaczewski S, Wilczynski J, Wystalska D, Kubiak M, Pszczoła M and Madeja Z E. 2022. Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multi-resistant Escherichia coli isolated from poultry production. Scientifc Reports 12(6062): 1–13. DOI: https://doi.org/10.1038/s41598-022-09996-y

Ramos S A, Silva V, Dapkevicius M, Canica M, Junco M, Igrejas G and Poeta P. 2020. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum beta-Lactamase (ESBL) production. Animals 10(12): 1–15. DOI: https://doi.org/10.3390/ani10122239

Rasmussen M M, Opintan J A, Frimodt-Moller N and Styrishave B. 2015. Beta-lactamase producing Escherichia coli isolates in imported and locally produced chicken meat from Ghana. PLOS ONE 10(10): 1–15. DOI: https://doi.org/10.1371/journal.pone.0139706

Sarkar M, Roy J P and Batabyal K. 2013. Characterization and antibiogram of enteropathogenic Escherichia coli isolated from poultry. Exploratory Animal and Medical Research 3(2): 165–68.

Sayah R S, Kaneene J B, Johnson Y and Miller R. 2005. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Applied and Environmental Microbiology 71(3): 1394–404. DOI: https://doi.org/10.1128/AEM.71.3.1394-1404.2005

Sebastian S, Tom A A, Babu J A and Joshy M. 2021. Antibiotic resistance in Escherichia coli isolates from poultry environment and UTI patients in Kerala, India: A comparison study. Comparative Immunology, Microbiology and Infectious Diseases 75(101614): 1–5. DOI: https://doi.org/10.1016/j.cimid.2021.101614

Tansawai U, Walsh T R and Niumsup P R. 2019. Extended spectrum ß-lactamase-producing Escherichia coli among backyard poultry farms, farmers, and environments in Thailand. Poultry Science 98(6): 2622–31. DOI: https://doi.org/10.3382/ps/pez009

Van T T, Yidana Z, Smooker P M and Coloe P J. 2019. antibiotic use in food animals in the world with focus on Africa: Pluses and minuses. Journal of Global Antimicrobial Resistance 20: 170–77. DOI: https://doi.org/10.1016/j.jgar.2019.07.031

Vila J, Saez-Lopez E and Johnsonetal J R. 2016. Escherichia coli: An old friend with new tidings. FEMS Microbiology Reviews 40(4): 437–63. DOI: https://doi.org/10.1093/femsre/fuw005

Zali F H, Chanawong A, Kerr K G, Birkenhead D and Hawkey P M. 2000. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the MAST DD test, the double disc and the E-test ESBL. Journal of Antimicrobial Chemotherapy 45(6): 881–85. DOI: https://doi.org/10.1093/jac/45.6.881

Downloads

Submitted

2022-08-17

Published

2023-07-12

How to Cite

PATEL, M. A., PANDEY, A., PATEL, S. S., PATEL, A. C., MOHAPATRA, S. K., CHAUHAN, H. C., SHARMA, K. K., PRAJAPATI, B. I., & CHANDEL, B. S. (2023). Prevalence and characterisation of antimicrobial resistance pattern of ESBLproducing Escherichia coli isolated from poultry in Banaskantha district, India. The Indian Journal of Animal Sciences, 93(6), 566–571. https://doi.org/10.56093/ijans.v93i6.126892
Citation