Low oxygen tension affects proliferation and senescence of caprine bone marrow mesenchymal stem cells in in vitro culture condition


163 / 241

Authors

  • S D KHARCHE ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281 122 India
  • S P SINGH ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281 122 India
  • J PATHAK ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281 122 India
  • D JENA ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281 122 India
  • S RANI ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281 122 India
  • K GURURAJ ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281 122 India

https://doi.org/10.56093/ijans.v93i1.127111

Keywords:

Bone marrow mesenchymal stem cell, Goats, Growth characteristics, Hypoxia

Abstract

The culture system of bone marrow mesenchymal stem cells (bmMSCs) in the normoxic environment does not imitate the hypoxic milieu of typical biological conditions, thus hypoxic culture conditions may improve survival, and growth attributes of bmMSCs during in vitro culture. Therefore, the present study was conducted at ICAR-CIRG, Makhdoom during year 2020 with the objective to investigate the changes in biological characteristics of cultured caprine bmMSCs (cbmMSCs) including the cellular senescence, survival, rate of proliferation, immuno-phenotypic characteristics, and gene expression pattern in a normal and hypoxic microenvironment condition. For this, cbmMSCs isolated from bone marrow collected from iliac crest were enriched and grown under either hypoxic (5% O2) or normoxic (20% O2) conditions. Thereafter, the outcome of hypoxic (5% O2) culturing of cbmMSCs on growth characteristics, proliferation, senescence, and expression profile of important stemness-associated (OCT-4) and oxidative stress [glutathione peroxidase (GPx1) and copper-zinc superoxide dismutase (CuZnSOD)] marker genes was evaluated. cbmMSCs cultivated in hypoxic conditions showed higher proliferation and decreased population doubling time and senescence-associated β-GAL expression; however, the immune-phenotypic characteristics of the cells remain unchanged. Furthermore, the culture of cbmMSCs in hypoxia increased the expression of OCT-4, GPx1, and CuZnSOD, compared with the cells grown under normoxia. In conclusion, the culture condition with low O2 level improved the growth characteristics and proliferation of cbmMSCs. These outcomes would provide information to formulate strategies for the collection and efficient in vitro expansion of bmMSCs from goats and other farm animals before their downstream applications.

Downloads

Download data is not yet available.

References

Abdollahi H, Harris L J, Zhang P, McIlhenny S, Srinivas V, Tulenko T and DiMuzio P J. 2011. The role of hypoxia in stem cell differentiation and therapeutics. The Journal of Surgical Research 165(1): 112–17. DOI: https://doi.org/10.1016/j.jss.2009.09.057

Adolfsson E, Helenius G, Friberg O, Samano N, Frobert O and Johansson K. 2020. Bone marrow and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration. Scandinavian Journal of Clinical and Laboratory Investigation 80(4): 318–26. DOI: https://doi.org/10.1080/00365513.2020.1741023

Antoniou E S, Sund S, Homsi E N, Challenger L F and Rameshwar P. 2004. A theoretical simulation of hematopoietic stem cells during oxygen fluctuations: prediction of bone marrow responses during hemorrhagic shock. Shock 22(5): 415–422. DOI: https://doi.org/10.1097/01.shk.0000142185.88094.88

Holzwarth C, Vaegler M, Gieseke F, Pfister S M, Handgretinger R, Kerst G and Müller I. 2010. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biololgy 11:11. DOI: https://doi.org/10.1186/1471-2121-11-11

Hung S P, Ho J H, Shih Y R, Lo T and Lee O K. 2012. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. Journal of Orthopaedic Research 30(2): 260–66. DOI: https://doi.org/10.1002/jor.21517

Ighodaro O M. 2018. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine and Pharmacotherapy 108: 656–62. DOI: https://doi.org/10.1016/j.biopha.2018.09.058

Jena D, Kharche S D, Singh S P, Rani S, Dige M S, Ranjan R, Singh S K and Kumar H. 2020. Growth and proliferation of caprine bone marrow mesenchymal stem cells on different culture media. Tissue and Cell 67: 101446. DOI: https://doi.org/10.1016/j.tice.2020.101446

Kim D S, Ko Y J, Lee M W, Park H J, Park Y J, Kim D I, Sung K W, Koo H H and Yoo K H. 2016. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells. Cell Stress and Chaperones 21(6): 1089–99. DOI: https://doi.org/10.1007/s12192-016-0733-1

Kwon S Y, Chun S Y, Ha Y S, Kim D H, Kim J, Song P H, Kim H T, Yoo E S, Kim B S and Kwon T G. 2017. Hypoxia enhances cell properties of human mesenchymal stem cells. Tissue Engineering and Regenerative Medicine 14(5): 595– 604. DOI: https://doi.org/10.1007/s13770-017-0068-8

Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4): 402–08. DOI: https://doi.org/10.1006/meth.2001.1262

Malladi P, Xu Y, Chiou M, Giaccia A J and Longaker M T. 2006. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. American Journal of Physiology. Cell Physiology 290(4): C1139–46. DOI: https://doi.org/10.1152/ajpcell.00415.2005

Mas-Bargues C, Sanz-Ros J, Román-Domínguez A, Inglés M, Gimeno-Mallench L, El Alami M, Viña-Almunia J, Gambini J, Viña J and Borrás C. 2019. Relevance of oxygen concentration in stem cell culture for regenerative medicine. International Journal of Molecular Sciences 20(5): 1195. DOI: https://doi.org/10.3390/ijms20051195

Mohd Ali N, Boo L, Yeap S K, Ky H, Satharasinghe D A, Liew W C, Ong H K, Cheong S K and Kamarul T. 2016. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. PeerJ 4: e1536. DOI: https://doi.org/10.7717/peerj.1536

Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A. 2010. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 7(2):150–61. DOI: https://doi.org/10.1016/j.stem.2010.07.007

Peck S H, Bendigo J R, Tobias J W, Dodge G R, Malhotra N R, Mauck R L and Smith L J. 2021. Hypoxic preconditioning enhances bone marrow-derived mesenchymal stem cell survival in a low oxygen and nutrient-limited 3D microenvironment. Cartilage 12(4): 512–25. DOI: https://doi.org/10.1177/1947603519841675

Roemeling-van Rhijn M, Mensah F K, Korevaar S S, Leijs M J, van Osch G J, Ijzermans J N, Betjes M G, Baan C C, Weimar W and Hoogduijn M J. 2013. Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells. Frontiers in Immunology 4: 203. DOI: https://doi.org/10.3389/fimmu.2013.00203

Sakata H, Niizuma K, Wakai T, Narasimhan P, Maier C M and Chan P H. 2012. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke 43(9): 2423–29. DOI: https://doi.org/10.1161/STROKEAHA.112.656900

Samal J R K, Rangasami V K, Samanta S, Varghese O P and Oommen O P. 2021. Discrepancies on the role of oxygen gradient and culture condition on mesenchymal stem cell fate. Advanced Healthcare Materials 10(6): 2002058. DOI: https://doi.org/10.1002/adhm.202002058

Singh S P, Kharche S D, Pathak M, Ranjan R, Soni Y K, Singh M K, Pourouchottamane R and Chauhan M S. 2021. Low oxygen tension potentiates proliferation and stemness but not multilineage differentiation of caprine male germline stem cells. Molecular Biology Reports 48(6): 5063–74. DOI: https://doi.org/10.1007/s11033-021-06501-y

Spencer J A, Ferraro F, Roussakis E, Klein A, Wu J, Runnels J M, Zaher W, Mortensen L J, Alt C, Turcotte R, Yusuf R, Côté D, Vinogradov S A, Scadden D T and Lin C P. 2014. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508(7495): 269–73. DOI: https://doi.org/10.1038/nature13034

Tsai C C, Su P F, Huang Y F, Yew T L and Hung S C. 2012. OCT-4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Molecular Cell 47(2): 169–82. DOI: https://doi.org/10.1016/j.molcel.2012.06.020

V R. 2006. Doubling Time Computing, Available from: http://www.doubling-time.com/compute.php.

Vono R, Jover Garcia E, Spinetti G and Madeddu P. 2018. Oxidative stress in mesenchymal stem cell senescence: regulation by coding and noncoding RNAs. Antioxidants and Redox Signaling 29(9): 864–79. DOI: https://doi.org/10.1089/ars.2017.7294

Wang Y, Salem A Z M, Tan Z, Kang J and Wang Z. 2021. Activation of glucocorticoid receptors is associated with the suppression of antioxidant responses in the liver of goats fed a high-concentrate diet. Italian Journal of Animal Science 20(1): 195–204. DOI: https://doi.org/10.1080/1828051X.2021.1873706

Ye G, Xie Z, Zeng H, Wang P, Li J, Zheng G, Wang S, Cao Q, Li M, Liu W, Cen S, Li Z, Wu Y, Ye Z and Shen H. 2020. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death and Disease 11(9): 775. DOI: https://doi.org/10.1038/s41419-020-02993-x

Yoo D Y, Kim D W, Chung J Y, Jung H Y, Kim J W, Yoon Y S, Hwang I K, Choi J H, Choi G M, Choi S Y and Moon S M. 2016. Cu, Zn-superoxide dismutase increases the therapeutic potential of adipose-derived mesenchymal stem cells by maintaining antioxidant enzyme levels. Neurochemical Research 41(12): 3300–07. DOI: https://doi.org/10.1007/s11064-016-2062-2

Downloads

Submitted

2022-08-20

Published

2023-01-17

Issue

Section

Articles

How to Cite

KHARCHE, S. D., SINGH, S. P., PATHAK, J., JENA, D., RANI, S., & GURURAJ, K. (2023). Low oxygen tension affects proliferation and senescence of caprine bone marrow mesenchymal stem cells in in vitro culture condition. The Indian Journal of Animal Sciences, 93(1), 33–38. https://doi.org/10.56093/ijans.v93i1.127111
Citation