Identification of methylation pattern in the partial promoter of acetyl CoA carboxylase beta (ACACB) gene in White Leghorn line


Abstract views: 97 / PDF downloads: 108

Authors

  • C H SHIVAPRASAD College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, Telangana
  • R VINOO NTR College of Veterinary Science, Gannavaram, Andhra Pradesh
  • R N CHATTERJEE ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana
  • M MURALIDHAR College of Veterinary Science, Garivide, Andhra Pradesh
  • D NARENDRANATH NTR College of Veterinary Science, Gannavaram, Andhra Pradesh
  • K ASWANIKUMAR NTR College of Veterinary Science, Gannavaram, Andhra Pradesh
  • T K BHATTACHARYA ICAR-National Research Centre on Equines, Hisar, Haryana
  • G SUSHMA College of Veterinary Science, Tirupati, Andhra Pradesh
  • M KANAKACHARI ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana
  • A R PRASAD College of Veterinary Science, Mamunoor, Telangana

https://doi.org/10.56093/ijans.v93i6.128234

Keywords:

ACACB gene, Methylation, Partial promoter, White Leghorn

Abstract

The present study was initiated with an objective of identifying methylation pattern in the partial promoter of Acetyl CoA carboxylase beta (ACACB) gene in White Leghorn IWK line. To understand the epigenetic regulation of gene expression, birds with highest and lowest expression at 18th week and 40th week age were chosen. Epigenetic profile of the minimal promoter indicated that there were seven CpG islands in this region, positioned at 75, 87, 155, 269, 284, 311 and 426 positions of the 555 bp promoter region. Among these, except the position 75, the remaining positions showed cis-acting transcription factors. There was negative relationship between highest and lowest expressed birds with the per cent methylation in White Leghorn IWK line. The mean methylation per cent was found to be 42.85 and 21.42 at 18th and 40th weeks of age, respectively. The results indicated decrease in methylation per cent with age. The overall mean methylation per cent of 32.14 was observed.

Downloads

Download data is not yet available.

References

Bhattacharya T K, Chatterjee, R N, Sharma R P, Niranjan M and Rajkumar U. 2011. Associations between nvel polymorphisms at the 5’UTR region of the prolactin gene and egg production and quality in chickens. Theriogenology 75: 655–61. DOI: https://doi.org/10.1016/j.theriogenology.2010.10.005

Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes and Development 16: 6–21. DOI: https://doi.org/10.1101/gad.947102

Bock C. 2012. Analysing and interpreting DNA methylation data. Nature Reviews Genetics 13: 705–19. DOI: https://doi.org/10.1038/nrg3273

Carlos Guerrero-Bosagna, Mireille Morisson, Laurence Liaubet, T Bas Rodenburg, Elske N de Haas, L’ubor Kost’a´ and Fre´de´rique Pitel. 2018. Transgenerational epigenetic inheritance in birds. Environmental Epigenetics 4: No. 2 DOI: https://doi.org/10.1093/eep/dvy008

Dolinoy D, Huang D and Jirtle R L. 2007. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proceedings of the National Academy of Sciences 104: 13056–61. DOI: https://doi.org/10.1073/pnas.0703739104

Eckhardt F, Lewin J, Cortese R, Rakyan V K, Attwood J, Burger M, Burton J, Cox T V, Davies R, Down T A, Haefliger C, Horton R, Howe, K, Jackson D K, Kunde J, Koenig, C, Liddle J, Niblett D, Otto T, Pettett, Seemann S, Thompson C, West, Rogers J, Olek, A, Berlin K and Beck S. 2006. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genetics 38: 1378–85. DOI: https://doi.org/10.1038/ng1909

Egger G, Liang G, Aparicio A and Jones P A. 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–63. DOI: https://doi.org/10.1038/nature02625

Fagiolini M, Jensen C L and Champagne F A. 2009. Epigenetic influences on brain development and plasticity. Current Opinion in Neurobiology 19: 207–12. DOI: https://doi.org/10.1016/j.conb.2009.05.009

Feil R and Fraga M F. 2012. Epigenetics and the environment: emerging patterns and implications. Nature Reviews Genetics 13: 97–109. DOI: https://doi.org/10.1038/nrg3142

Frommer M, Mcdonald L E, Millar D S, Collis C M, Watt F, Grigg G W, Molloy P L and Paul C L. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences 89: 1827– 31. DOI: https://doi.org/10.1073/pnas.89.5.1827

Gehring M, Bubb K L and Henikoff S. 2009. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324: 1447–51. DOI: https://doi.org/10.1126/science.1171609

Goll M G and Bestor T H. 2005. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry 74: 481– 514. DOI: https://doi.org/10.1146/annurev.biochem.74.010904.153721

Guerrero-Bosagna C and Jensen P. 2015. Globalization, climate change, and transgenerational epigenetic inheritance: will our descendants be at risk? Clinical Epigenetics 7: 8. DOI: https://doi.org/10.1186/s13148-014-0043-3

Guerrero-Bosagna C and Skinner M K. 2012. Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Molecular and Cellular Endocrinology 354: 3–8. DOI: https://doi.org/10.1016/j.mce.2011.10.004

Guerrero-Bosagna C M, Sabat P, Valdovinos F S, Valladares L E and Clark S J. 2008. Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiology 8: 17. DOI: https://doi.org/10.1186/1472-6793-8-17

Hsieh T F, Ibarra C A, Silva P, Zemach A Eshed-Williams L, Fischer L and Zilberman D. 2009. Genome-wide demethylation of Arabidopsis endosperm. Science 324: 1451–54. DOI: https://doi.org/10.1126/science.1172417

Jones P A and Takai D. 2001. The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–70. DOI: https://doi.org/10.1126/science.1063852

Kile M L, Houseman E A, Baccarelli A, Quamruzzaman Q, Rahman M, Mostofa G, Cardenas A, Wright Ro and Christiani D C. 2014. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 9: 774. DOI: https://doi.org/10.4161/epi.28153

Kisliouk T and Meiri N A. 2009. Critical role for dynamic changes in histone H3 methylation at the Bdnf promoter during postnatal thermotolerance acquisition. European Journal of Neuroscience 30: 1909–22. DOI: https://doi.org/10.1111/j.1460-9568.2009.06957.x

Knippers R and Nordheim A. 2015. Molekulare Genetik (10th ed., p. 568). ThiemeVerlag: Stuttgart. DOI: https://doi.org/10.1055/b-0034-102292

Leroux S, Gourichon D, Leterrier C, Labrune Y, Coustham V, Riviere S, Zerjal T, Coville J L, Morisson M, Minvielle F and Pitel F. 2017. Embryonic environment and transgenerational effects in quail. Genetics Selection Evolution 49: 14. DOI: https://doi.org/10.1186/s12711-017-0292-7

Li L C and Dahiya R. 2002. Meth primer: Designing primers for methylation PCRs. Bioinformatics 18(11): 1427–31. DOI: https://doi.org/10.1093/bioinformatics/18.11.1427

Li S, Zhi L, Liu Y, Shen J, Liu L, Yao J and Yang X. 2016. Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. British Journal of Nutrition 115: 411–21. DOI: https://doi.org/10.1017/S0007114515004511

Lister R, O’Malley R C, Tonti-Filippini J, Gregory D, Berry C C, Millar A H and Ecker J R. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523–36. DOI: https://doi.org/10.1016/j.cell.2008.03.029

Liu G, Zong K, Zhang L and Cao S. 2010. Dietary methionine affect meat quality and myostatin gene exon 1 region methylation in skeletal muscle tissues of broilers. Agricultural Sciences in China 9: 1338–46. DOI: https://doi.org/10.1016/S1671-2927(09)60224-8

Lu Y, Chen S and Yang N. 2013. Expression and methylation of FGF2, TGF-β and their downstream mediators during different developmental stages of leg muscles in chicken. PLoS ONE 8(11): e79495. DOI: https://doi.org/10.1371/journal.pone.0079495

Mallona I, Díez-Villanueva A and Peinado M A. 2014. Methylation plotter: a web tool for dynamic visualization of DNA methylation data. Source Code. Biochemical Medicine 9(1): 1. DOI: https://doi.org/10.1186/1751-0473-9-11

Miska E A and Ferguson-Smith A C. 2016. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance. Science 354: 59–63. DOI: https://doi.org/10.1126/science.aaf4945

Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen P A and Jensen P. 2009. Inheritance of acquired behaviour adaptations and brain gene expression in chickens. PLoS ONE 4: e6405. DOI: https://doi.org/10.1371/journal.pone.0006405

Nätt D, Rubin C J, Wright D, Johnsson M, Belteky J, Andersson L and Jensen P. 2012. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13: 59. DOI: https://doi.org/10.1186/1471-2164-13-59

Popiela A, Keith G, Borzecki A and Marian G. 2004. The meaning of the methylation of genomic DNA in the regulation of gene expression levels. European Journal of Gynaecological Oncology 25(2): 145–49.

Rakyan V K Down T A, Maslau S, Andrew T, Yang T P, Beyan H, Whittaker P, McCann, O T, Finer S, Valdes A M, Leslie R D, Deloukas P and Spector T D. 2010. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Research 20(4): 434–39. DOI: https://doi.org/10.1101/gr.103101.109

Razin A and Cedar H. 1991. DNA methylation and gene expression. Microbiology Reviews 55: 451–58. DOI: https://doi.org/10.1128/mr.55.3.451-458.1991

Riggs A D and Porter T N. 1996. Overview of epigenetic mechanisms, pp. 29-45. Epigenetic Mechanisms of Gene Regulation. (Eds.) Russo V E A, Martienssen R and Riggs A D. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Riggs A D, Martienssen R A and Russo V E A. 1996. Introduction, pp. 1-4. Epigenetic Mechanisms of Gene Regulation. (Eds.) Russo V E A, Martienssen R and Riggs A D. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Sambrook J and Russell R W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold spring harbor laboratory press, cold spring harbor, N.Y.

Schübeler D. 2015. Function and information content of DNA methylation. Nature 517: 321–26. DOI: https://doi.org/10.1038/nature14192

Skinner M K. 2015. Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biology and Evolution 7: 1296–1302. DOI: https://doi.org/10.1093/gbe/evv073

Susiarjo M, Sasson I, Mesaros C, Bartolomei and Bisphenol M S. 2013. A exposure disrupts genomic imprinting in the mouse. PLoS Genetics 9: e1003401. DOI: https://doi.org/10.1371/journal.pgen.1003401

Suzuki M and Bird A. 2008. DNA methylation landscapes: Provocative insights from epigenomics. Nature Reviews Genetics 9: 465–76. DOI: https://doi.org/10.1038/nrg2341

Takai D, Gonzales F A, Tsai Y C, Thayer M J and Jones P A. 2001. Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Human Molecular Genetics 10(23): 2619–26. DOI: https://doi.org/10.1093/hmg/10.23.2619

Tost J. 2009. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Methods in Molecular Biology 507: 3–20. DOI: https://doi.org/10.1007/978-1-59745-522-0_1

Verhulst E C, Mateman A C, Zwier M V, Caro S P, Verhoeven K J F and van Oers K. 2016. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Molecular Ecology 25: 1801–11. DOI: https://doi.org/10.1111/mec.13519

Waddington C H. 1953. Epigenetics and evolution. Symposia of the Society for Experimental Biology 7: 186–99.

Weber M, Davies J J, Wittig D, Oakeley E J, Haase M, Lam W L and Schubeler D. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics 37: 853–62. DOI: https://doi.org/10.1038/ng1598

Wen C, Chen Y, Wu P, Wang T and Zhou Y. 2014. MSTN, mTOR and FoxO4 are involved in the enhancement of breast muscle growth by methionine in broilers with lower hatching weight. PLoS ONE 9(12): e114236. DOI: https://doi.org/10.1371/journal.pone.0114236

Yossifoff M, Kisliouk T and Meiri N. 2008. Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. European Journal of Neuroscience 28: 2267–77. DOI: https://doi.org/10.1111/j.1460-9568.2008.06532.x

Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan S W, Chen H, Henderson I R, Shinn P, Pellegrini M, Jacobsen S E and Ecker J R. 2006. Genomewide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189–1201. DOI: https://doi.org/10.1016/j.cell.2006.08.003

Zilberman D, Gehring M, Tran R K, Ballinger T and Henikoff S. 2007. Genome wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics 39: 61–69. DOI: https://doi.org/10.1038/ng1929

Downloads

Submitted

2022-09-20

Published

2023-07-12

How to Cite

SHIVAPRASAD, C. H., VINOO, R., CHATTERJEE, R. N., MURALIDHAR, M., NARENDRANATH, D., ASWANIKUMAR, K., BHATTACHARYA, T. K., SUSHMA, G., KANAKACHARI, M., & PRASAD, A. R. (2023). Identification of methylation pattern in the partial promoter of acetyl CoA carboxylase beta (ACACB) gene in White Leghorn line. The Indian Journal of Animal Sciences, 93(6), 588–593. https://doi.org/10.56093/ijans.v93i6.128234
Citation