The Apparent metabolizable energy and apparent metabolizable energy corrected for nitrogen balance of amaranth grains for Japanese quails (Coturnix coturnix japonica)


172 / 197

Authors

  • CAIO SILVA QUIRINO Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060900 Brasil
  • HEDER JOSÉ D’AVILA LIMA Departamento de Zootecnia e Extensão Rural, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brasil
  • MARCOS VINÍCIUS MARTINS MORAIS Departamento de Zootecnia e Extensão Rural, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brasil
  • ELIEVERSON FIRMIANI DE FREITAS AMARAL Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060900 Brasil
  • TATIANA MARQUES BITTENCOURT Departamento de Zootecnia e Extensão Rural, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brasil
  • JULIANA FREITAS MARTINEZ Departamento de Zootecnia e Extensão Rural, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brasil
  • ISABELLI DIAS BRITO PEREIRA Departamento de Zootecnia e Extensão Rural, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, 78060900, Brasil

https://doi.org/10.56093/ijans.v93i04.129429

Keywords:

Alternative food, Cereal, Gross energy, Laying bird

Abstract

The objective was to determine the values of apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen balance (AMEn) of roasted and in natura amaranth grains. A breeding stock of 108 female Japanese quails (Coturnix coturnix japonica) with an initial age of 29 days was used. The birds were distributed in a completely randomized design with three treatments and six replications, with six quails per experimental unit. The treatments used were reference diet, reference diet + 30% in natura amaranth and reference diet + 30% roasted amaranth. The variables evaluated were feed intake, body weight variation, retained nitrogen, retained crude protein, dry matter digestibility and crude protein. Higher values of AME and AMEn were verified for the roasted amaranth grains, in relation to the in natura grains. There was no verification regarding the influence of amaranth grains, both roasted and in natura, for the variables feed intake, body weight variation, retained nitrogen, retained crude protein, dry matter and crude protein digestibility. It was concluded that the in natura amaranth grains provided 3888 kcal/ kg of AME and 3352 kcal/kg of AMEn, while the roasted amaranth grains provided 4044 kcal/kg of AME and 4028 kcal/kg of AMEn.

Downloads

Download data is not yet available.

References

Bianchini M D G D A, Beleia A D P and Bianchini A. 2014. Modificação da composição química de farinhas integrais de grãos de amaranto após a aplicação de diferentes tratamentos térmicos. Ciência Rural 44(1): 167–73. DOI: https://doi.org/10.1590/S0103-84782014000100027

Black J L, Hughes R J, Nielsen S G, Tredrea A M and Flinn P C. 2009. Near infrared reflectance analysis of grains to estimate nutritional value for chickens. Proceedings of the 20th Australian Poultry Science Symposium, Sydney, New South Wales, Australia, 31–34.

Blok M C. 2009. CVB Table Booklet Feeding of Poultry. Product Board Animal Feed: Zoetermeer, Netherlands, ed. 2, 34 pages.

Borges F M D O, Rostagno H S and Saad C E D P. 2004. Efeito do consumo de alimento sobre os valores energéticos do grão de trigo e seus subprodutos para frangos de corte, obtidos pela motodologia da alimentação forçada. Ciência e Agrotecnologia 28(6): 1392–99. DOI: https://doi.org/10.1590/S1413-70542004000600023

Costa D M A and Borges A S. 2005. Avaliação da produção agrícola do amaranto (Amaranthus hypochondriacus). Holos 1: 97–111. DOI: https://doi.org/10.15628/holos.2005.61

Costa E M D S, Figueiredo A V D, Lopes J B, Ribeiro F B, Silva S R G D, Almendra S N D O, Carvalho Filho D U and Lima D C P 2013. Desempenho de frangos de corte alimentados com dietas contendo grão integral e coprodutos da soja em ambiente com calor cíclico. Revista Brasileira de Saúde e Produção Animal 14(4): 710–20. DOI: https://doi.org/10.1590/S1519-99402013000400010

CVB. 2009. CVB Table Booklet Feeding of Poultry CVB. Zoeter-meer, the Netherlands.

Emily L B, Terri D B and Lester A W. 2009. Effect of cultivar and roasting method on composition of roasted soybeans. Journal of the Science of Food and Agriculture 89(5): 821–26. DOI: https://doi.org/10.1002/jsfa.3519

Escudero N L, Albarracin G J, Lucero Lopez R V and Giménez M S. 2011. Antioxidant activity and phenolic content of flour and protein concentrate of Amaranthus cruentus seeds. Journal of Food Biochemistry 35(4): 1327–41. DOI: https://doi.org/10.1111/j.1745-4514.2010.00454.x

Ferreira T A P C, Guerra-Matias A C and Arêas J A G. 2007. Características nutricionais e funcionais do Amaranto (Amaranthus sp.). Nutrire - Revista da Sociedade Brasileira de Alimentação e Nutrição 32(2): 91–116.

Ferreira D F. 2019. SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria 37(4): 529–35. DOI: https://doi.org/10.28951/rbb.v37i4.450

Garnsworthy P C, Wiseman J and Fegeros K. 2000. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. Journal of Agricultural Science 135(4): 409–17. DOI: https://doi.org/10.1017/S0021859699008382

Gehring C K, Bedford M R, Cowieson A J and Dozier Iii W A. 2012. Effects of corn source on the relationship between in vitro assays and ileal nutrient digestibility. Poultry Science 91(8): 1908–14. DOI: https://doi.org/10.3382/ps.2012-02175

Janssen W. 1989. European Table of Energy Values for Poultry Feedstuffs. Spelderholt Centre for Poultry Research and Information Services. WPSA: Beekbergen, Netherlands, 3 ed. 104 pages.

Khalil M M, Abdollahi M R, Zaefarian F, Chrystal P V and Ravindran V. 2021. Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age. Poultry Science 100(9): 1–8. DOI: https://doi.org/10.1016/j.psj.2021.101288

Kong X, Bao J and Corke H. 2009. Physical properties of Amaranthus starch. Food Chemistry 113(2): 371–76. DOI: https://doi.org/10.1016/j.foodchem.2008.06.028

Króliczewska B, Zawadzki W, Bartkowiak A and Skiba T. 2008. The level of selected blood indicators of laying hens fed with addition of amaranth grain. Electronic Journal of Polish Agricultural Universities 11(2) :1–7.

Lamothe L M, Srichuwong S, Reuhs B L and Hamaker B R. 2015. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food chemistry 167: 490–96. DOI: https://doi.org/10.1016/j.foodchem.2014.07.022

Lima H J D A. 2018. Coturnicultura Básica. Rio de Janeiro: Multifoco, Rio de Janeiro, Brasil, ed. 2. 92 pages.

Mateos G G, Cámara L, Fondevila G and Lázaro R P. 2019. Critical review of the procedures used for estimation of the energy content of diets and ingredients in poultry. Journal of Applied Poultry Research 28(3): 506–525. DOI: https://doi.org/10.3382/japr/pfy025

Matterson L D, Potter L M and Stutz M W. 1965. The metabolizable energy of feed ingredients for chickens. Storrs: The University of Connecticut, Agricutural Experiment Station, ed. 1, 11pages.

Miura E M Y, Silva R S D S F D, Mizubuti I Y and Ida E I. 2005. Cinética de inativação de inibidores de tripsina e de insolubilização de proteínas de diferentes cultivares de soja. Revista brasileira de zootecnia 34(5): 1659–65. DOI: https://doi.org/10.1590/S1516-35982005000500028

Moura A M A, Fonseca J B, Takata F N, Rabello C B V and Lombardi C T. 2010. Determinação da energia metabolizável de alimentos para codornas japonesas em postura. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 62(1): 178–83. DOI: https://doi.org/10.1590/S0102-09352010000100024

Oliveira B L. 2007. Manejo em granjas automatizadas de codornas de postura comercial. Simpósio Internacional, Congresso Brasileiro de Coturnicultura. Lavras: Universidade Federal de Lavras, 11-16.

Ravindran V, Hood R L, Gill R J, Kneale C R and Bryden W L. 1996. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Animal Feed Science and Technology 63(1–4): 323–331. DOI: https://doi.org/10.1016/S0377-8401(96)00997-2

Rostagno H S, Albino L F T, Hannas M I, Donzele J L, Sakomura N K, Perazzo F G and Brito C O. 2017. Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais, Departamento de Zootecnia, Viçosa- MG, ed. 4, 488 pages.

Sakomura N K and Rostagno H S. 2016. Métodos de Pesquisa Em Nutricao de Monogastricos. Funep: Jaboticabal, São Paulo, ed. 2, 262 pages.

Sauvant D, Perez J M and Tran G. 2004. Tables of Composition and Nutritional Value of Feed Materials: pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen Academy Publishers: Wageningen, The Netherlands, ed. 2, 303 pages. DOI: https://doi.org/10.3920/978-90-8686-668-7

Silva D J and Queiroz A C. 2002. Análises de alimentos (métodos químicos e biológicos). Editora UFV: Viçosa-MG, Brasil, ed. 3., 235 pages.

Singh A, Kumari A and Chauhan A K. 2022. Formulation and evaluation of novel functional snack bar with amaranth, rolled oat, and unripened banana peel powder. Journal of Food Science and Technology 59: 1–11. DOI: https://doi.org/10.1007/s13197-021-05344-6

Tancharoenrat P, Ravindran V, Zaefarian F and Ravindran G. 2013. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Animal Feed Science and Technology 186(3–4): 186–92. DOI: https://doi.org/10.1016/j.anifeedsci.2013.10.013

Tillman P B and Waldroup P W. 1988. Assessment of extruded grain amaranth as a feed ingredient for broilers apparent metabolizable energy values. Poultry Science 67(4): 641–46. DOI: https://doi.org/10.3382/ps.0670641

Tyagi P K, Shrivastav A K, Mandal A B, Tyagi P K, Elangovan A V and Deo C. 2008. The apparent metabolizable energy and feeding value of quality protein maize for broiler chicken. Indian Journal of Poultry Science 43(2): 169–74.

Valdes E V and Leeson S. 1994. Measurement of metabolizable energy, gross energy, and moisture in feed grade fats by near infrared reflectance spectroscopy. Poultry Science 73(1): 163–71. DOI: https://doi.org/10.3382/ps.0730163

Wu S B, Choct M and Pesti G. 2020. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: A critical review. Poultry Science 99(1): 385–406. DOI: https://doi.org/10.3382/ps/pez511

Yegani M, Swift M L, Zijlstra R T and Korver D R. 2013. Prediction of energetic value of wheat and triticale in broiler chicks: a chick bioassay and an in vitro digestibility technique. Animal Feed Science and Technology 183(1-2): 40-50. DOI: https://doi.org/10.1016/j.anifeedsci.2013.03.010

Zhao F, Ren L Q, Mi B M, Tan H Z, Zhao J T, Li H, Zhang H F and Zhang Z Y. 2014. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster. Journal of Animal Science 92(4):1537–47. DOI: https://doi.org/10.2527/jas.2013-6636

Downloads

Submitted

2022-10-21

Published

2023-05-04

Issue

Section

Articles

How to Cite

QUIRINO, C. S., LIMA, H. J. D., MORAIS, M. V. M., AMARAL, E. F. D. F., BITTENCOURT, T. M., MARTINEZ, J. F., & PEREIRA, I. D. B. (2023). The Apparent metabolizable energy and apparent metabolizable energy corrected for nitrogen balance of amaranth grains for Japanese quails (Coturnix coturnix japonica). The Indian Journal of Animal Sciences, 93(04), 366–371. https://doi.org/10.56093/ijans.v93i04.129429
Citation