Study of mRNA expression of thirteen genes of Trypanosoma evansi in response to diminazene aceturate and isometamidium chloride
219 / 296
Keywords:
Diminazene aceturate, HMI-9 medium, Isometamidium chloride, qPCR, Trypanosoma evansiAbstract
The monomorphic, non-cyclic, extracellular haemoprotozoan parasite, Trypanosoma evansi leads to Surra disease in domesticated animals. Currently, diminazene aceturate (DA) and isometamidium chloride (ISM) are the most used chemotherapeutic agents for the treatment of Surra in animals. There is still little knowledge on the anti- trypanosomal mechanism of action of DA and ISM. The work addresses a significant gap in the understanding of the anti-typanosomal mechanism of DA and ISM by investigating their effects on mRNA expression profiles of 13 genes of T. evansi. The half maximal inhibitory concentration (IC50) of DA and ISM for a pony isolate of T. evansi was estimated as 335.3 nM and 308.6 nM, respectively. Transcript analysis of DA and ISM exposed T. evansi population showed its effects on the metabolic machinery of T. evansi by down-regulating the mRNA expression of all the 13 targeted genes. However, ISM exposure did not affect mRNA expression of Expression site-associated genes 8 (ESAG8), oligopeptidase B and ornithine decarboxylase genes. The finding provides valuable insights into the molecular action of these drugs, which is crucial for developing more effective treatment of Surra disease. Further, comprehensive transcriptome and proteomic analysis could provide a deeper insight into precise molecular pathway of these medications against T. evansi.
Downloads
References
Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L and Vandesompele J. 2009. The MIQE guidelines: Minimum information for publication of quantitative Real-Time PCR experiments. Clinical Chemistry 55: 611–22. DOI: https://doi.org/10.1373/clinchem.2008.112797
Caramelo-Nunes C, Tente T, Almeida P, Marcos J C and Tomaz C T. 2011 Specific berenil–DNA interactions: An approach for separation of plasmid isoforms by pseudo-affinity chromatography. Analytical Biochemistry 412: 153–58. DOI: https://doi.org/10.1016/j.ab.2011.01.033
da Silva Oliveira G L and de Freitas R M. 2015. Diminazene aceturate-An antiparasitic drug of antiquity: Advances in pharmacology and therapeutics. Pharmacological Research 102: 138–57. DOI: https://doi.org/10.1016/j.phrs.2015.10.005
de Brito M G, Mengarda A C, Oliveira G L, Cirino M E, Silva T C, de Oliveira R N, Allegretti S M and de Moraes J. 2020. Therapeutic effect of diminazene aceturate on parasitic blood fluke Schistosoma mansoni infection. Antimicrobial Agents and Chemotherapy 64: e01372–20. DOI: https://doi.org/10.1128/AAC.01372-20
Delespaux V and de Koning H P. 2007. Drugs and drug resistance in African trypanosomiasis. Drug Resistance Updates 10: 30–50. DOI: https://doi.org/10.1016/j.drup.2007.02.004
Dixon H, Ginger C D and Williamson J. 1971. The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 39: 247–66. DOI: https://doi.org/10.1016/0305-0491(71)90168-4
Eghianruwa K I and Oridupa O A. 2018. Chemotherapeutic control of trypanosomosis-A review of past measures, current status and future trends. Veterinarski Arhiv 88: 245–70. DOI: https://doi.org/10.24099/vet.arhiv.161115a
Giordani F, Morrison L J, Rowan T G, De Koning H P and Barrett M P. 2016. The animal trypanosomiases and their chemotherapy: A review. Parasitology 143: 1862–89. DOI: https://doi.org/10.1017/S0031182016001268
Girgis-Takla P and James D M. 1974. In vitro uptake of isometamidium and diminazene by Trypanosoma brucei. Antimicrobial Agents and Chemotherapy 6: 372–74. DOI: https://doi.org/10.1128/AAC.6.3.372
Greene C E, Latimer K, Hopper E, Shoeffler G, Lower K and Cullens F. 1999. Administration of diminazene aceturate or imidocarb dipropionate for treatment of cytauxzoonosis in cats. Journal of American Veterinary Medical Association 215: 497–500. DOI: https://doi.org/10.2460/javma.1999.215.04.497
Gupta S, Vohra S, Sethi K, Gupta S, Bera B C, Kumar S and Kumar R. 2022b. In vitro anti-trypanosomal effect of ivermectin on Trypanosoma evansi by targeting multiple metabolic pathways. Tropical Animal Health and Production 54: 240. DOI: https://doi.org/10.1007/s11250-022-03228-1
Gupta S, Vohra S, Sethi K, Gupta S, Kumar S and Kumar R. 2022a. Gene expression study to elucidate the anti- trypanosomal activity of quinapyramine methyl sulphate (QPS). Parasitology International 91: 102632. DOI: https://doi.org/10.1016/j.parint.2022.102632
Gupta S, Vohra S, Sethi K, Rani R, Gupta S, Kumar S and Kumar R. 2023. In vitro and in vivo evaluation of efficacy of berberine chloride: Phyto-alternative approach against Trypanosoma evansi infection. Molecular and Biochemical Parasitology 254: 111562. DOI: https://doi.org/10.1016/j.molbiopara.2023.111562
Hay J, Kirkness C M, Seal D V and Wright P. 1994. Drug resistance and Acanthamoeba keratitis: The quest for alternative antiprotozoal chemotherapy. Eye 8: 555–63. DOI: https://doi.org/10.1038/eye.1994.137
Kaminsky R, Schmid C and Lun Z R. 1997. Susceptibility of dyskinetoplastic Trypanosoma evansi and T. equiperdum to isometamidium chloride. Parasitology Research 83: 816–18. DOI: https://doi.org/10.1007/s004360050346
Kasozi K I, MacLeod E T, Ntulume I and Welburn S C. 2022. An update on African trypanocide pharmaceutics and resistance. DOI: https://doi.org/10.3389/fvets.2022.828111
Frontiers in Veterinary Sciences 9: 62.
Keneth I K, MacLeod E T, Ntulume I and Welburn S C. 2022. An update on african trypanocide pharmaceutics and resistance.
Frontiers in Veterinary Sciences 9: 828111.
Kinabo L D B. 1993. Pharmacology of existing drugs for animal trypanosomiasis. Acta Tropica 54: 169–83. DOI: https://doi.org/10.1016/0001-706X(93)90091-O
Kuriakose S and Uzonna J E. 2014. Diminazene aceturate (Berenil), a new use for an old compound? International Immunopharmacology 21: 342–45. DOI: https://doi.org/10.1016/j.intimp.2014.05.027
Lantz C H and Van Dyke K. 1972. Plamodium berghei: Inhibited incorporation of AMP-8-3H into nucleic acids of erythrocyte- free malarial parasites by acridines, phenanthridines, and 8-aminoquinolines. Experimental Parasitology 31: 255–61. DOI: https://doi.org/10.1016/0014-4894(72)90116-6
Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402–08. DOI: https://doi.org/10.1006/meth.2001.1262
Mukhopadhyay R and Madhubala R. 1995. Effects of bis (benzyl) polyamine analogs on Leishmania donovani promastigotes, Experimental Parasitology 81: 39–46. DOI: https://doi.org/10.1006/expr.1995.1090
Neidle S. 2001. DNA minor-groove recognition by small molecules. Natural Product Reports 18: 291–309. DOI: https://doi.org/10.1039/a705982e
Newton B A. 1975. Berenil: A trypanocide with selective activity against extranuclear DNA, pp. 34-37. Mechanism of Action of Antimicrobial and Antitumor Agents. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-46304-4_4
Peregrine A S and Mamman M. 1993. Pharmacology of diminazene: A review. Acta Tropica 54: 185–203. DOI: https://doi.org/10.1016/0001-706X(93)90092-P
Pilch D S, Kirolos M A, Liu X, Plum G E and Breslauer K J. 1995. Berenil [1, 3-bis (4’-amidinophenyl) triazene] binding to DNA duplexes and to a RNA duplex: Evidence for both intercalative and minor groove binding properties. Biochemical 34: 9962–76. DOI: https://doi.org/10.1021/bi00031a019
Qaradakhi T, Gadanec L K, McSweeney K R, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, Egom E E, Rodrigo L, Kruzliak P and Kubatka P. 2020. The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clinical and Experimental Pharmacology and Physiology 47: 751–8. DOI: https://doi.org/10.1111/1440-1681.13251
Richardson J P. 1973. Mechanism of ethidium bromide inhibition of RNA polymerase. Journal of Molecular Biology 78: 703–14. Shapiro T A and Englund P T. 1990. Selective cleavage of kinetoplast DNA minicircles promoted by anti-trypanosomal drugs. Proceedings of the National Academy of Sciences 87: 950–54. DOI: https://doi.org/10.1073/pnas.87.3.950
Shiferaw S, Muktar Y and Belina D. 2015. A review on trypanocidal drug resistance in Ethiopia. Journal of Parasitology and Vector Biology 7: 58–66
Tuntasuvan D, Jarabrum W, Viseshakul N, Mohkaew K, Borisutsuwan S, Theeraphan A and Kongkanjana N. 2003. Chemotherapy of surra in horses and mules with diminazene aceturate. Veterinary Parasitology 110: 227–33. DOI: https://doi.org/10.1016/S0304-4017(02)00304-7
Venturelli A, Tagliazucchi L, Lima C, Venuti F, Malpezzi G, Magoulas G E, Santarem N, Calogeropoulou T, Cordeiro- da-Silva A and Costi M P. 2022. Current treatments to control African trypanosomiasis and one health perspective. Microorganisms 10: 1298. DOI: https://doi.org/10.3390/microorganisms10071298
Wagner T E. 1971. Physical studies on the interaction of lysergic acid diethylamide and trypanocidal dyes with DNA and DNA- containing genetic material, pp. 152-162. Proceedings of the research symposium on complexes of biologically active substances with nucleic acids and their modes of action. Springer, Berlin- Heidelberg. DOI: https://doi.org/10.1007/978-3-642-65141-0_14
Wilkes J M, Mulugeta W, Wells C and Peregrine A S. 1997. Modulation of mitochondrial electrical potential: A candidate mechanism for drug resistance in African trypanosomes. Biochemical Journal 326: 755–61. DOI: https://doi.org/10.1042/bj3260755
Zhou J, Le V, Kalia D, Nakayama S, Mikek C, Lewis E A and Sintim H O. 2014. Diminazene or berenil, a classic duplex minor groove binder, binds to G-quadruplexes with low nanomolar dissociation constants and the amidine groups are also critical for G-quadruplex binding. Molecular Biosystems 10: 2724–34. DOI: https://doi.org/10.1039/C4MB00359D
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2024 The Indian Journal of Animal Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles published in The Indian Journal of Animal Sciences is vested with the Indian Council of Agricultural Research, which reserves the right to enter into any agreement with any organization in India or abroad, for reprography, photocopying, storage and dissemination of information. The Council has no objection to using the material, provided the information is not being utilized for commercial purposes and wherever the information is being used, proper credit is given to ICAR.