Study of mRNA expression of thirteen genes of Trypanosoma evansi in response to diminazene aceturate and isometamidium chloride


219 / 296

Authors

  • SNEHIL GUPTA Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana image/svg+xml
  • SUKHDEEP VOHRA Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana image/svg+xml
  • KHUSHBOO SETHI ICAR-National Research Centre on Equines, Hisar, Haryana 125 001 India image/svg+xml
  • RUMA RANI ICAR-National Research Centre on Equines, Hisar, Haryana 125 001 India image/svg+xml
  • SURBHI GUPTA Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana image/svg+xml
  • RAJENDER KUMAR ICAR-National Research Centre on Equines, Hisar, Haryana 125 001 India image/svg+xml
  • SANJAY KUMAR ICAR-National Research Centre on Equines, Hisar, Haryana 125 001 India image/svg+xml

https://doi.org/10.56093/ijans.v94i10.153120

Keywords:

Diminazene aceturate, HMI-9 medium, Isometamidium chloride, qPCR, Trypanosoma evansi

Abstract

The monomorphic, non-cyclic, extracellular haemoprotozoan parasite, Trypanosoma evansi leads to Surra disease in domesticated animals. Currently, diminazene aceturate (DA) and isometamidium chloride (ISM) are the most used chemotherapeutic agents for the treatment of Surra in animals. There is still little knowledge on the anti- trypanosomal mechanism of action of DA and ISM. The work addresses a significant gap in the understanding of the anti-typanosomal mechanism of DA and ISM by investigating their effects on mRNA expression profiles of 13 genes of T. evansi. The half maximal inhibitory concentration (IC50) of DA and ISM for a pony isolate of T. evansi was estimated as 335.3 nM and 308.6 nM, respectively. Transcript analysis of DA and ISM exposed T. evansi population showed its effects on the metabolic machinery of T. evansi by down-regulating the mRNA expression of all the 13 targeted genes. However, ISM exposure did not affect mRNA expression of Expression site-associated genes 8 (ESAG8), oligopeptidase B and ornithine decarboxylase genes. The finding provides valuable insights into the molecular action of these drugs, which is crucial for developing more effective treatment of Surra disease. Further, comprehensive transcriptome and proteomic analysis could provide a deeper insight into precise molecular pathway of these medications against T. evansi.

Downloads

Download data is not yet available.

References

Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L and Vandesompele J. 2009. The MIQE guidelines: Minimum information for publication of quantitative Real-Time PCR experiments. Clinical Chemistry 55: 611–22. DOI: https://doi.org/10.1373/clinchem.2008.112797

Caramelo-Nunes C, Tente T, Almeida P, Marcos J C and Tomaz C T. 2011 Specific berenil–DNA interactions: An approach for separation of plasmid isoforms by pseudo-affinity chromatography. Analytical Biochemistry 412: 153–58. DOI: https://doi.org/10.1016/j.ab.2011.01.033

da Silva Oliveira G L and de Freitas R M. 2015. Diminazene aceturate-An antiparasitic drug of antiquity: Advances in pharmacology and therapeutics. Pharmacological Research 102: 138–57. DOI: https://doi.org/10.1016/j.phrs.2015.10.005

de Brito M G, Mengarda A C, Oliveira G L, Cirino M E, Silva T C, de Oliveira R N, Allegretti S M and de Moraes J. 2020. Therapeutic effect of diminazene aceturate on parasitic blood fluke Schistosoma mansoni infection. Antimicrobial Agents and Chemotherapy 64: e01372–20. DOI: https://doi.org/10.1128/AAC.01372-20

Delespaux V and de Koning H P. 2007. Drugs and drug resistance in African trypanosomiasis. Drug Resistance Updates 10: 30–50. DOI: https://doi.org/10.1016/j.drup.2007.02.004

Dixon H, Ginger C D and Williamson J. 1971. The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 39: 247–66. DOI: https://doi.org/10.1016/0305-0491(71)90168-4

Eghianruwa K I and Oridupa O A. 2018. Chemotherapeutic control of trypanosomosis-A review of past measures, current status and future trends. Veterinarski Arhiv 88: 245–70. DOI: https://doi.org/10.24099/vet.arhiv.161115a

Giordani F, Morrison L J, Rowan T G, De Koning H P and Barrett M P. 2016. The animal trypanosomiases and their chemotherapy: A review. Parasitology 143: 1862–89. DOI: https://doi.org/10.1017/S0031182016001268

Girgis-Takla P and James D M. 1974. In vitro uptake of isometamidium and diminazene by Trypanosoma brucei. Antimicrobial Agents and Chemotherapy 6: 372–74. DOI: https://doi.org/10.1128/AAC.6.3.372

Greene C E, Latimer K, Hopper E, Shoeffler G, Lower K and Cullens F. 1999. Administration of diminazene aceturate or imidocarb dipropionate for treatment of cytauxzoonosis in cats. Journal of American Veterinary Medical Association 215: 497–500. DOI: https://doi.org/10.2460/javma.1999.215.04.497

Gupta S, Vohra S, Sethi K, Gupta S, Bera B C, Kumar S and Kumar R. 2022b. In vitro anti-trypanosomal effect of ivermectin on Trypanosoma evansi by targeting multiple metabolic pathways. Tropical Animal Health and Production 54: 240. DOI: https://doi.org/10.1007/s11250-022-03228-1

Gupta S, Vohra S, Sethi K, Gupta S, Kumar S and Kumar R. 2022a. Gene expression study to elucidate the anti- trypanosomal activity of quinapyramine methyl sulphate (QPS). Parasitology International 91: 102632. DOI: https://doi.org/10.1016/j.parint.2022.102632

Gupta S, Vohra S, Sethi K, Rani R, Gupta S, Kumar S and Kumar R. 2023. In vitro and in vivo evaluation of efficacy of berberine chloride: Phyto-alternative approach against Trypanosoma evansi infection. Molecular and Biochemical Parasitology 254: 111562. DOI: https://doi.org/10.1016/j.molbiopara.2023.111562

Hay J, Kirkness C M, Seal D V and Wright P. 1994. Drug resistance and Acanthamoeba keratitis: The quest for alternative antiprotozoal chemotherapy. Eye 8: 555–63. DOI: https://doi.org/10.1038/eye.1994.137

Kaminsky R, Schmid C and Lun Z R. 1997. Susceptibility of dyskinetoplastic Trypanosoma evansi and T. equiperdum to isometamidium chloride. Parasitology Research 83: 816–18. DOI: https://doi.org/10.1007/s004360050346

Kasozi K I, MacLeod E T, Ntulume I and Welburn S C. 2022. An update on African trypanocide pharmaceutics and resistance. DOI: https://doi.org/10.3389/fvets.2022.828111

Frontiers in Veterinary Sciences 9: 62.

Keneth I K, MacLeod E T, Ntulume I and Welburn S C. 2022. An update on african trypanocide pharmaceutics and resistance.

Frontiers in Veterinary Sciences 9: 828111.

Kinabo L D B. 1993. Pharmacology of existing drugs for animal trypanosomiasis. Acta Tropica 54: 169–83. DOI: https://doi.org/10.1016/0001-706X(93)90091-O

Kuriakose S and Uzonna J E. 2014. Diminazene aceturate (Berenil), a new use for an old compound? International Immunopharmacology 21: 342–45. DOI: https://doi.org/10.1016/j.intimp.2014.05.027

Lantz C H and Van Dyke K. 1972. Plamodium berghei: Inhibited incorporation of AMP-8-3H into nucleic acids of erythrocyte- free malarial parasites by acridines, phenanthridines, and 8-aminoquinolines. Experimental Parasitology 31: 255–61. DOI: https://doi.org/10.1016/0014-4894(72)90116-6

Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402–08. DOI: https://doi.org/10.1006/meth.2001.1262

Mukhopadhyay R and Madhubala R. 1995. Effects of bis (benzyl) polyamine analogs on Leishmania donovani promastigotes, Experimental Parasitology 81: 39–46. DOI: https://doi.org/10.1006/expr.1995.1090

Neidle S. 2001. DNA minor-groove recognition by small molecules. Natural Product Reports 18: 291–309. DOI: https://doi.org/10.1039/a705982e

Newton B A. 1975. Berenil: A trypanocide with selective activity against extranuclear DNA, pp. 34-37. Mechanism of Action of Antimicrobial and Antitumor Agents. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-46304-4_4

Peregrine A S and Mamman M. 1993. Pharmacology of diminazene: A review. Acta Tropica 54: 185–203. DOI: https://doi.org/10.1016/0001-706X(93)90092-P

Pilch D S, Kirolos M A, Liu X, Plum G E and Breslauer K J. 1995. Berenil [1, 3-bis (4’-amidinophenyl) triazene] binding to DNA duplexes and to a RNA duplex: Evidence for both intercalative and minor groove binding properties. Biochemical 34: 9962–76. DOI: https://doi.org/10.1021/bi00031a019

Qaradakhi T, Gadanec L K, McSweeney K R, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, Egom E E, Rodrigo L, Kruzliak P and Kubatka P. 2020. The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clinical and Experimental Pharmacology and Physiology 47: 751–8. DOI: https://doi.org/10.1111/1440-1681.13251

Richardson J P. 1973. Mechanism of ethidium bromide inhibition of RNA polymerase. Journal of Molecular Biology 78: 703–14. Shapiro T A and Englund P T. 1990. Selective cleavage of kinetoplast DNA minicircles promoted by anti-trypanosomal drugs. Proceedings of the National Academy of Sciences 87: 950–54. DOI: https://doi.org/10.1073/pnas.87.3.950

Shiferaw S, Muktar Y and Belina D. 2015. A review on trypanocidal drug resistance in Ethiopia. Journal of Parasitology and Vector Biology 7: 58–66

Tuntasuvan D, Jarabrum W, Viseshakul N, Mohkaew K, Borisutsuwan S, Theeraphan A and Kongkanjana N. 2003. Chemotherapy of surra in horses and mules with diminazene aceturate. Veterinary Parasitology 110: 227–33. DOI: https://doi.org/10.1016/S0304-4017(02)00304-7

Venturelli A, Tagliazucchi L, Lima C, Venuti F, Malpezzi G, Magoulas G E, Santarem N, Calogeropoulou T, Cordeiro- da-Silva A and Costi M P. 2022. Current treatments to control African trypanosomiasis and one health perspective. Microorganisms 10: 1298. DOI: https://doi.org/10.3390/microorganisms10071298

Wagner T E. 1971. Physical studies on the interaction of lysergic acid diethylamide and trypanocidal dyes with DNA and DNA- containing genetic material, pp. 152-162. Proceedings of the research symposium on complexes of biologically active substances with nucleic acids and their modes of action. Springer, Berlin- Heidelberg. DOI: https://doi.org/10.1007/978-3-642-65141-0_14

Wilkes J M, Mulugeta W, Wells C and Peregrine A S. 1997. Modulation of mitochondrial electrical potential: A candidate mechanism for drug resistance in African trypanosomes. Biochemical Journal 326: 755–61. DOI: https://doi.org/10.1042/bj3260755

Zhou J, Le V, Kalia D, Nakayama S, Mikek C, Lewis E A and Sintim H O. 2014. Diminazene or berenil, a classic duplex minor groove binder, binds to G-quadruplexes with low nanomolar dissociation constants and the amidine groups are also critical for G-quadruplex binding. Molecular Biosystems 10: 2724–34. DOI: https://doi.org/10.1039/C4MB00359D

Downloads

Submitted

2024-06-26

Published

2024-10-08

Issue

Section

Articles

How to Cite

GUPTA, S. ., VOHRA, S. ., SETHI, K. ., RANI, R. ., GUPTA, S. ., KUMAR, R. ., & KUMAR, S. . (2024). Study of mRNA expression of thirteen genes of Trypanosoma evansi in response to diminazene aceturate and isometamidium chloride. The Indian Journal of Animal Sciences, 94(10), 837–843. https://doi.org/10.56093/ijans.v94i10.153120
Citation