PCR-SSCP analysis in detecting point mutations targeting rpoB, katG and inhA genes for determining multi-drug resistance in Mycobacterium bovis and Mycobacterium tuberculosis strains


247 / 129

Authors

  • ALEX KIDANGAN Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • RISHENDRA VERMA Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

https://doi.org/10.56093/ijans.v84i9.43508

Keywords:

Mycobacterium tuberculosis, Mycobacterium bovis, PCR-SSCP

Abstract

The usefulness of polymerase chain reaction-single stranded confirmation polymorphism (PCR-SSCP) for determination of rifampicin and isoniazid resistance in Mycobacterium tuberculosis and M. bovis cultures from human and animal origin was investigated. Mycobacteria (81) in the study included, were 12 MDR-TB samples, 35 sputum samples, 3 lung and lymph node tissues from bovines and 11 M. tuberculosis and 18 M. bovis culture, M. tuberculosis H37Rv and M. bovis BCG strain. All the mycobacterial cultures were characterized on growth characteristics, biochemical test pattern, MTB complex specific IS6110 PCR and species specific 12.7 kb multiplex PCR. PCR-SSCP was used to determine resistance against rifiampin by targeting rpoB gene (305bp) and isoniazid by targeting katG (237bp) and inhA (261 bp). Rifampicin resistance was detected by PCR-SSCP in 1 out of 12 MDR-TB samples (8.3%), while isoniazid resistance was detected in 66.7% of MDR-TB samples using PCRSSCP of katG and 75% of MDR-TB samples using inhA SSCP analysis.

Downloads

Download data is not yet available.

References

Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um K S, Wilson T, Collins D, de Lisle G and Jacobs Jr W R. 1994. inhA, a gene encoding a target for INH and ethionamide in Mycobacterium tuberculosis. Science 263: 227–30. DOI: https://doi.org/10.1126/science.8284673

Bassam B J, Caetano-Anolles G and Gresshoff P M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196 (1): 80–83. DOI: https://doi.org/10.1016/0003-2697(91)90120-I

Chakravorty S and Tyagi J S. 2005. Novel multipurpose methodology for detection of mycobacteria in pulmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. Journal of Clinical Microbiology 43: 2697–702. DOI: https://doi.org/10.1128/JCM.43.6.2697-2702.2005

Chakravorty S, Dudeja M, Hanif M and Tyagi J S. 2005. Utility of USP smear microscopy, culture and PCR in the diagnosis of pulmonary tuberculosis. Journal of Clinical Microbiology 43: 2703–08. DOI: https://doi.org/10.1128/JCM.43.6.2703-2708.2005

Coleman J D and Cooke M M. 2001. Mycobacterium bovis infection in wildlife in New Zealand. Tuberculosis (Edinburgh) 81: 191–202. DOI: https://doi.org/10.1054/tube.2001.0291

Honore N and Cole S T. 1993. Molecular basis of Rifampin resistance in Mycobacterium leprae. Antimicrobial Agents Chemotherapy 37: 414–18. DOI: https://doi.org/10.1128/AAC.37.3.414

Heym B, Honore N, Schurra C, Cole S T, Heym B, Truffot- Pernot C, Grosset J H, Banerjee A, Jacobs Jr W R and van Embden J D A. 1994. Implications of multidrug resistance for the future of short course chemotherapy of tuberculosis: a molecular study. Lancet 344: 293–98. DOI: https://doi.org/10.1016/S0140-6736(94)91338-2

Miller L P, Crawford J T and Shinnick T M. 1994 The rpoB gene of Mycobacterium tuberculosis. Antimicrobial Agents Chemotherapy 38: 805–11. DOI: https://doi.org/10.1128/AAC.38.4.805

Jin D J and Gross C A. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. Journal of Molecular Biology 202: 45– 48. DOI: https://doi.org/10.1016/0022-2836(88)90517-7

Kapur V, Li L L, Iordanescu S, Hamrick M R, Wanger A, Kreiswirth B N and Musser M J. 1994. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNApolymerase sub-unit in rifampin resistant Mycobacterium tuberculosis strains from New York city and Texas. Journal of Clinical Microbiology 32: 1095–98. DOI: https://doi.org/10.1128/jcm.32.4.1095-1098.1994

Lisitsyn N A, Sverdlov E V, Moiseyeva E P, Danilevskaya O N and Nikiforov V G. 1984. Mutation to rifampin resistance at the beginning of the RNA polymerase beta subunit gene in Escherichia coli. Molecular and General Genetics 196: 173– 74. DOI: https://doi.org/10.1007/BF00334112

Ovchinnikov Y A, Monastyrskaya G S, Guriev S O, Kalinina N F, Sverdlov E D, Gragerov A I, Bass I A, Kiver I F, Moiseyeva E P, Igumnov V N, Mindlin S Z, Nikiforov V G and Khesin R B. 1983. RNA polymerase rifampicin resistance mutations in Escherichia coli: sequence changes and dominance. Molecular and General Genetics 190: 344–48. DOI: https://doi.org/10.1007/BF00330662

Marks J. 1972. Classification of the mycobacteria in relation to clinical significance. Tubercle 53: 259. DOI: https://doi.org/10.1016/0041-3879(72)90004-9

Petroff S A. 1915. A new and rapid method for the isolation and cultivation of tubercle bacilli directly from the sputum and feces. Journal of Experimental Medicine 21: 38–42. DOI: https://doi.org/10.1084/jem.21.1.38

Sechi L A, Sanguinetti M, Molicotti P L, Romano Leori G, Delogu G, Boccia S, M La Sorda and Fadda G. 2001. Molecular basis of rifampin and isoniazid resistance in Mycobacterium bovis strains isolated in Sardinia Itlay. Antimicrob Agents Chemother 45 (6): 1645–48. DOI: https://doi.org/10.1128/AAC.45.6.1645-1648.2001

Silva M S N, Senna S G, Ribeiro M O, Valim A R M, Telles M A, Kritski A, Morlock G P, Cooksey R C, Zaha A and Rossetti M L R. 2003. Mutations in katG, inhA and ahpC genes of Brazilian Isoniazid resistant isolates of Mycobacterium tuberculosis. Journal of Clinical Microbiology 41(9): 4471–74. DOI: https://doi.org/10.1128/JCM.41.9.4471-4474.2003

Telenti A, Imboden P, Marchesi F, Schmedheim T and Bodmer T. 1993. Direct automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single stranded conformation polymorphism analysis. Antimicrobial Agents Chemotherapy 37: 2054–58. DOI: https://doi.org/10.1128/AAC.37.10.2054

Thangaselvam M, Kidangan A, Verma Rishendra and Ramane S P. 2009. Molecular Detection and Differentiation of Mycobacterium tuberculosis Complex in Human Sputum Samples Using PCR Assays: A Preliminary Report. Indian Journal of Veterinary Research 18 (2): 50–54.

Victor T, Du Toit R and van Helden PD. 1992. Purification of sputum samples through Sucrose improves detection of Mycobacterium tuberculosis by Polymerase Chain Reaction. Journal of Clinical Microbiology 30 (6): 1514–17. DOI: https://doi.org/10.1128/jcm.30.6.1514-1517.1992

Williams D L, Waguespack C, Eisenach K, Crawford J T, Portaels F, Salfinger M, Nolan C M, Abe C, Sticht-Groh V and Gillis T

P. 1994. Characterization of Rifampin resistance in pathogenic Mycobacteria. Antimicrobial agents and Chemotherapy 38 (10): 2380–86. DOI: https://doi.org/10.1128/AAC.38.10.2380

Zhang Y, Heym B, Young D and Cole S. 1992. The catalase- peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591–93. DOI: https://doi.org/10.1038/358591a0

Downloads

Submitted

2014-09-10

Published

2014-09-17

Issue

Section

Articles

How to Cite

KIDANGAN, A., & VERMA, R. (2014). PCR-SSCP analysis in detecting point mutations targeting rpoB, katG and inhA genes for determining multi-drug resistance in Mycobacterium bovis and Mycobacterium tuberculosis strains. The Indian Journal of Animal Sciences, 84(9), 939–943. https://doi.org/10.56093/ijans.v84i9.43508
Citation