Efficient TALEN-mediated mutagenesis on a highly conserved region of myostatin gene in mouse embryonic stem cells


Abstract views: 167 / PDF downloads: 49

Authors

  • A TAHERI-GHAHFAROKHI Monash Institute of Medical Research, Clayton VIC3168 Australia
  • M TAHMOORESPUR Monash Institute of Medical Research, Clayton VIC3168 Australia
  • H DEHGHANI Monash Institute of Medical Research, Clayton VIC3168 Australia
  • Y SHAMSHIRGARAN Ferdowsi University of Mashhad, Mashhad 91775–1163 Iran
  • H SUMER Swinburne University of Technology, Hawthorne, Australia
  • J LIU Monash Institute of Medical Research, Clayton VIC3168 Australia
  • P J VERMA Monash Institute of Medical Research, Clayton VIC3168 Australia

https://doi.org/10.56093/ijans.v84i11.44725

Keywords:

Gene targeting, Golden-Gate cloning, High resolution melting, Myostatin, TALENs

Abstract

Myostatin is a negative regulator of muscle growth. The naturally occurring mutations of myostatin gene (MSTN) are strongly associated with meat production traits in livestock. Thus far, many attempts have been made to knock- down/knock-out MSTN across numerous species. The main objective of this study was to construct and evaluate the efficiency of a single pair of transcription activator like effectors nucleases (TALENs), to target MSTN in mouse. A target site in a highly conserved region of MSTN exon 2, with minimal off-target counts was selected for targeting by customized TALENs. The targeted site was identified similarly among mouse, cattle, sheep, goat and pig. A modified Golden Gate TALEN generating platform was used for producing the myostatin specific TALEN- expressing plasmids. Generated myostatin TALENs were evaluated in mouse embryonic stem cells (mESC) using high resolution melting (HRM) analysis for detecting newly arising TALEN-induced mutations in the myostatin gene. Our results showed that generated TALENs are functional and able to disrupt the myostatin gene at an efficiency of up to 35% in mESC. If translated to livestock species, this approach can be utilized for producing myostatin modified animals with lower food conversion ratios. The precision and efficiency achieved may even enable direct targeting of zygotes with TALENs, affecting a step-change in the generation of knock-out livestock.

Downloads

Download data is not yet available.

References

Argiles J M, Orpi M, Busquets S and Lopez-Soriano F J. 2012. Myostatin: more than just a regulator of muscle mass. Drug Discovery Today 17(13–14): 702–9. DOI: https://doi.org/10.1016/j.drudis.2012.02.001

Bedell V M, Wang Y, Campbell J M, Poshusta T L, Starker C G, Krug R G, Tan W, Penheiter S G, Ma A C, Leung A Yet al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491(7422): 114–8. DOI: https://doi.org/10.1038/nature11537

Bellinge R H, Liberles D A, Iaschi S P, O’Brien P A and Tay G K. 2005. Myostatin and its implications on animal breeding: a review. Animal Genetics 36(1): 1–6. DOI: https://doi.org/10.1111/j.1365-2052.2004.01229.x

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A and Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 (5959): 1509–12. DOI: https://doi.org/10.1126/science.1178811

Bogdanove A J and Voytas D F. 2011. TAL effectors: customizable proteins for DNA targeting. Science333 (6051): 1843–6. DOI: https://doi.org/10.1126/science.1204094

Bogdanovich S, Krag T O, Barton E R, Morris L D, Whittemore L A, Ahima R S and Khurana T S. 2002. Functional improvement of dystrophic muscle by myostatin blockade. Nature 420 (6914): 418–21. DOI: https://doi.org/10.1038/nature01154

Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B and Fahrenkrug S C. 2012. Efficient TALEN-mediated gene knockout in livestock. Proceeding National Academy of Science United States of America 109 (43): 17382–7. DOI: https://doi.org/10.1073/pnas.1211446109

Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J and Voytas D F. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39 (12): e82. DOI: https://doi.org/10.1093/nar/gkr218

Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen J M, Eychenne Fet al. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics 38 (7): 813–8. DOI: https://doi.org/10.1038/ng1810

Dahlem T J, Hoshijima K, Jurynec M J, Gunther D, Starker C G, Locke A S, Weis A M, Voytas D F and Grunwald D J. 2012. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8(8): e1002861. DOI: https://doi.org/10.1371/journal.pgen.1002861

Doyle E L, Booher N J, Standage D S, Voytas D F, Brendel V P, Vandyk J K and Bogdanove A J. 2012. TAL Effector- Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Research 40 (Web Server issue): W117–22. DOI: https://doi.org/10.1093/nar/gks608

Feng Y, Zhang S and Huang X. 2014. A robust TALENs system for highly efficient mammalian genome editing. Scientific Reports 4: 3632. DOI: https://doi.org/10.1038/srep03632

Frank S, Skryabin B V and Greber B. 2013. A modified TALEN- based system for robust generation of knock-out human pluripotent stem cell lines and disease models. BMC Genomics 14: 773. DOI: https://doi.org/10.1186/1471-2164-14-773

Grisolia A B, Curi R A, De Lima V F, Olmedo H P, Kmiec E, Nunes C M, Aoki S M and Garcia J F. 2009. Targeted nucleotide exchange in bovine myostatin gene. Animal Biotechnology 20(1): 15–27. DOI: https://doi.org/10.1080/10495390802594693

Kambadur R, Sharma M, Smith T P and Bass J J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research 7(9): 910–6. DOI: https://doi.org/10.1101/gr.7.9.910

Kim Y, Kweon J and Kim J S. 2013. TALENs and ZFNs are associated with different mutation signatures. Nature Methods 10(3): 185. DOI: https://doi.org/10.1038/nmeth.2364

McPherron A C, Lawler A M and Lee S J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628): 83–90. DOI: https://doi.org/10.1038/387083a0

McPherron A C and Lee S J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America 94 (23): 12457–61. DOI: https://doi.org/10.1073/pnas.94.23.12457

Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S Jet al. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology 29(2): 143–8. DOI: https://doi.org/10.1038/nbt.1755

Moscou M J and Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326 (5959): 1501. Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G and Ostrander E A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics 3(5): e79. DOI: https://doi.org/10.1371/journal.pgen.0030079

Panda S K, Wefers B, Ortiz O, Floss T, Schmid B, Haass C, Wurst W and Kuhn R. 2013. Highly efficient targeted mutagenesis in mice using TALENs. Genetics 195 (3): 703–13. DOI: https://doi.org/10.1534/genetics.113.156570

Perez-Pinera P, Ousterout D G, Brunger J M, Farin A M, Glass K A, Guilak F, Crawford G E, Hartemink A J and Gersbach C A. 2013. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nature Methods 10 (3): 239–42. DOI: https://doi.org/10.1038/nmeth.2361

Rodgers B D and Garikipati D K. 2008. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocrine Reviews 29(5): 513–34. DOI: https://doi.org/10.1210/er.2008-0003

Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Yet al. 2013. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes to Cells 18 (4): 315–26. DOI: https://doi.org/10.1111/gtc.12037

Schuelke M, Wagner K R, Stolz L E, Hubner C, Riebel T, Komen W, Braun T, Tobin J F and Lee S J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine 350 (26): 2682–8. DOI: https://doi.org/10.1056/NEJMoa040933

Tan W, Carlson D F, Lancto C A, Garbe J R, Webster D A, Hackett P B and Fahrenkrug S C. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America 110 (41): 16526–31. DOI: https://doi.org/10.1073/pnas.1310478110

Tripathi A K, Aparnathi M K, Patel A K and Joshi C G. 2013. In vitro silencing of myostatin gene by shRNAs in chicken embryonic myoblast cells. Biotechnology Progress 29 (2): 425–31. DOI: https://doi.org/10.1002/btpr.1681

Wang H, Hu Y C, Markoulaki S, Welstead G G, Cheng A W, Shivalila C S, Pyntikova T, Dadon D B, Voytas D F, Bogdanove A Jet al. 2013. TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnology31(6): 530–2. DOI: https://doi.org/10.1038/nbt.2595

Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Li X, Song J, Yang Yet al. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PloS one 8(12): e84250. DOI: https://doi.org/10.1371/journal.pone.0084250

Xu L, Zhao P, Mariano A and Han R. 2013. Targeted Myostatin Gene Editing in Multiple Mammalian Species Directed by a Single Pair of TALE Nucleases. Molecular Therapy Nucleic Acids 2: e112. DOI: https://doi.org/10.1038/mtna.2013.39

Zhang L, Yang X, An X and Chen Y. 2007. Myostatin gene targeting in cultured China Han ovine myoblast cells. Animal 1 (10): 1401–8. DOI: https://doi.org/10.1017/S1751731107000717

Zheng Y L, Ma H M, Zheng Y M, Wang Y S, Zhang B W, He X Y, He X N, Liu J and Zhang Y. 2012. Site-directed mutagenesis of the myostatin gene in ovine fetal myoblast cells in vitro. Research in Veterinary Science 93(2): 763–9. DOI: https://doi.org/10.1016/j.rvsc.2011.10.022

Downloads

Submitted

2014-11-14

Published

2014-11-13

Issue

Section

Articles

How to Cite

TAHERI-GHAHFAROKHI, A., TAHMOORESPUR, M., DEHGHANI, H., SHAMSHIRGARAN, Y., SUMER, H., LIU, J., & VERMA, P. J. (2014). Efficient TALEN-mediated mutagenesis on a highly conserved region of myostatin gene in mouse embryonic stem cells. The Indian Journal of Animal Sciences, 84(11), 1185–1191. https://doi.org/10.56093/ijans.v84i11.44725
Citation