Role of infectious disease information system and risk assessment in control of livestock diseases in Indian perspectives: A review


347 / 189

Authors

  • K P SURESH ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka 560 064 India
  • S S PATIL ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka 560 064 India
  • L YASASWINI ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka 560 064 India
  • D HEMADRI ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka 560 064 India
  • G S DESAI ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka 560 064 India
  • H RAHMAN ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka 560 064 India

https://doi.org/10.56093/ijans.v87i5.70218

Keywords:

Disease informatics, Disease modelling, Infectious disease, Livestock diseases, Risk assessment

Abstract

Many livestock diseases have a severe impact on the country's economic status. Diseases cause highly destructive epidemics. It imposes severe consequences, especially in the areas of densely populated livestock. Infectious Disease Informatics, an emerging field of study, involves information management in a systematic way and analysis of issues related to infectious disease detection, prevention and management. Surveillance and awareness are the two essential phenomenon to be adapted, so that the early detection of disease outbreaks is possible and rapid control measures are schemed to prevent further spread of the disease. Recent advances in disease surveillance system, information technology and epidemiological modelling have raised the expectations on the early warning systems as they are not only sensible but also necessary tools to combat the re-occurrence and spread of infectious diseases. The evolution of remote sensing instrumentation, GIS technology and their application and evaluation of satellite data to the issues of disease risk prediction are reviewed and discussed. The importance of risk assessment and disease risk prediction in livestock epidemiology has been illustrated with example case studies. An overview of the types of epidemiological studies, various sampling techniques and the role of meta-analysis in livestock disease informatics has been specified. The paper also focuses on the techniques being developed for infectious disease risk prediction in both space and time.

Downloads

Download data is not yet available.

References

Adler F R. 1992. The effects of averaging on the basic reproduction ratio. Mathematical Biosciences 111: 89–98. DOI: https://doi.org/10.1016/0025-5564(92)90080-G

Adnan Khan, Muhammad Hassan and Mudassar Imran. 2014. Estimating the basic reproduction number for single-strain dengue fever epidemics. Infectious Diseases of Poverty 12(3): 1–17. DOI: https://doi.org/10.1186/2049-9957-3-12

Adrian Treves, Kerry A. Martin, Adrian P Wydeven and Jane E Wiedenhoeft. 2011. Forecasting environmental hazards and the application of risk maps to predator attacks on livestock. Oxford Journals Science and Mathematics Bio Science 61(6): 451–58. DOI: https://doi.org/10.1525/bio.2011.61.6.7

al-Sekait M A, Bamgboye E A and al-Nasser A N. 1992. Sampling in epidemiological research: a case study of the prevalence of brucellosis in Saudi Arabia. Journal of the Royal Society for Promotion of Health 112(4): 172–76. DOI: https://doi.org/10.1177/146642409211200405

Angel Ortiz-Pelaez, Dirk U Pfeiffer, Stefano Tempia, F Tom Otieno, Hussein H Aden and Riccardo Costagli. 2010. Risk mapping of Rinderpest sero-prevalence in Central and Southern Somalia based on spatial and network risk factors. BMC Veterinary Research 6: 22. DOI: https://doi.org/10.1186/1746-6148-6-22

Asseged B, Tameru B, Nganwa D, Fite D and Habtemariam T. 2012. A quantitative assessment of the risk of introducing foot and mouth disease virus into the United States via cloned bovine embryos. Revue scientifique et technique 31(3): 761– 75. DOI: https://doi.org/10.20506/rst.31.3.2155

Bartolome Andreo, Nico Goldscheider, Inaki Vadillo, Jesus Maria Vias, Christoph Neukum, Michael Sinreich, Pablo Jimenez, Julia Brechenmacher, Francisco Carrasco, Heinz Hotzl, Maria Jesus Perles, Francois Zwahlen and Karst. 2004. Groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain). Science of the Total Environment 357(1–3, 15): 54–73. DOI: https://doi.org/10.1016/j.scitotenv.2005.05.019

Bernard D. Flury and Edward P. Levri. 1999. Periodic logistic regression. Ecology 80(7): 2254–60. DOI: https://doi.org/10.1890/0012-9658(1999)080[2254:PLR]2.0.CO;2

Choori P, Patil S S, Rathnamma D, Sharada R, Chandranaik B M, Isloor S, Geetha S and Rahman. 2014. Marker vaccines against classical swine fever-A Review. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases 35: 1–8.

Choori P, Patil S S, Rathnamma D, Sharada R, Chandranaik B M, Isloor S, Manjunath Reddy G B, Geetha S and Rahman H. 2015. Prevalence of classical swine fever in Karnataka, India. Veterinary World 8: 541–44. DOI: https://doi.org/10.14202/vetworld.2015.541-544

Chute C G. 2008. Bio surveillance, classification, and semantic health technologies. Journal of the American Medical Informatics Association 15(2): 172–73. DOI: https://doi.org/10.1197/jamia.M2693

Cobanovic K, Lozanov-Crvenkovic Z and Nikolic-Doric E. 2006. ICOTS-71-4.

Cringoli G, Taddei R, Rinaldi L, Veneziano V, Musella V, Cascone C, Sibilio G, Malone J B. 2004. Use of remote sensing and geographical information systems to identify environmental features that influence the distribution of paramphistomosis in sheep from the southern Italian Apennines. Veterinary Parasitology 122: 15–26. DOI: https://doi.org/10.1016/j.vetpar.2004.03.011

Damian Clancy and Philip D. 2008. O’Neill Bayesian estimation of the basic reproduction number in stochastic epidemic models. Bayesian Analysis 4: 737–58. DOI: https://doi.org/10.1214/08-BA328

David Layne Coppock. 2001. Risk Mapping for Northern Kenya and Southern Ethiopia Report. Global Livestock Collaborative Research Support Program. Utah State University.

Dominik D Alexander, Colleen A Cushing, Kimberly A Lowe, Bonnie Sceurman and Mark A. 2009. Roberts Meta-analysis of animal fat or animal protein intake and colorectal cancer. American Journal of Clinical Nutrition 89: 1402–09. DOI: https://doi.org/10.3945/ajcn.2008.26838

Forde-Folle K, Mitchell D and Zepeda C. 2011. The role of models in estimating consequences as part of the risk assessment process. Revue scientifique et technique 30 (2): 541–45. DOI: https://doi.org/10.20506/rst.30.2.2050

Gao. 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58: 257–66. DOI: https://doi.org/10.1016/S0034-4257(96)00067-3

Garner M G and Hamilton S A. 2011. Principles of epidemiological modelling. Revue scientifique et technique 30(2): 407–16. DOI: https://doi.org/10.20506/rst.30.2.2045

Hendrickx G, Biesemans J and De Deken R. 2004. The use of GIS in veterinary parasitology. GIS and Spatial Analysis in Veterinary Science. pp 145–176. DOI: https://doi.org/10.1079/9780851996349.0145

Herbert W Hethcote. 2000. The mathematics of infectious diseases. SIAM Review 42(4): 599–653. DOI: https://doi.org/10.1137/S0036144500371907

Hoppensteadt F C. 1982. Mathematical Methods in Population Biology. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511624087

Jonathan A C Sterne and Roger M Harbord. 2004. Funnel plots in meta-analysis. The Stata Journal 4(2): 127–41. DOI: https://doi.org/10.1177/1536867X0400400204

Kenneth J Rothman and Sander Greenland. 1998. Modern Epidemiology. Types of Epidemiologic Studies. 2nd edn, Chapter 5. pp 67–78.

Nielsen S S, Weber M F, Kudahl A B, Marce C and Toft N. 2011. Stochastic models to simulate para-tuberculosis in dairy herds. Revue scientifique et technique 30(2): 615–25. DOI: https://doi.org/10.20506/rst.30.2.2058

Patil S S, Hemadri D, Shankar B P, Raghavendra A, Veeresh H, Sindhoora B, Chandan S, Sreekala K, Gajendragad M R and Prabhudas K. 2010. Genetic typing of recent classical swine fever isolates from India. Veterinary Microbiology 141: 367– 73. DOI: https://doi.org/10.1016/j.vetmic.2009.09.021

Patil S S, Hemadri D, Veeresh H, Sreekala K, Gajendragad M R and Prabhudas K. 2012. Phylogenetic analysis of NS5B gene of classical swine fever virus isolates indicates plausible Chinese origin of Indian subgroup 2.2 viruses. Virus Genes 44: 104–08. DOI: https://doi.org/10.1007/s11262-011-0572-1

Putt S N H, Shaw A P M, Woods A J, Tyler L and James A D. 1987. Chapter 4. The epidemiological approach to investigating disease problems. Veterinary Epidemiology and Economics in Africa. A manual for use in the design and appraisal of livestock health policy.

Qihao Wenga, Dengsheng Lub and Jacquelyn Schubringa. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89: 467–83. DOI: https://doi.org/10.1016/j.rse.2003.11.005

Raghavendra A G, Gajendragad M R, Sengupta P, Patil S S, Tiwari C B, Balumahendiran M, Sankri V and Prabhudas K. 2008. Seroepidemiology of peste des petits ruminants in sheep and goats of southern peninsular India. Revue scientifique et technique 27(3): 861–67. DOI: https://doi.org/10.20506/rst.27.3.1838

Reeves A, Salman M D and Hill A E. 2011. Approaches for evaluating veterinary epidemiological models: verification, validation and limitations. Revue scientifique et technique 30(2): 499–512. DOI: https://doi.org/10.20506/rst.30.2.2053

Saegerman C, Porter S R and Humblet M F. 2011. The use of modelling to evaluate and adapt strategies for animal disease control. Revue scientifique et technique 30(2): 555–69. DOI: https://doi.org/10.20506/rst.30.2.2048

Shivaraj D B, Patil S S and Rathnamma D. 2013. An insight into Classical swine fever. Indian Farming 63: 23–26.

Shivaraj D B, Patil S S, Rathnamma D, Hemadri D, Isloor S, Geetha S, Manjunathareddy G B M, Gajendragad M R and Rahman H. 2015. Genetic clustering of recent classical swine fever virus isolates from Karnataka, India revealed the emergence of subtype 2.2 replacing subtype 1.1. Virus Disease 26: 170–79. DOI: https://doi.org/10.1007/s13337-015-0273-9

Shivaraj D B, Patil S S, Ratnamma D, Hemadri D, Geetha S, Narayanaswamy H D, Manjunatha Reddy, Sharada R, Aralikatti S S and Rahman H. 2013. Early detection of Classical swine fever virus in blood samples of pigs in Karnataka. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases 34: 18–23.

Shivaraj D, Patil S S, Rathnamma D, Veeregowda B M, Hemadri D, Geetha S, Reddy G B M, Sharada R, Shesharao and Rahman H. 2013. Seroprevalence of classical swine fever in Karnataka. Indian Journal of Field Veterinarians 9: 26–29.

Shivaraj D, Patil S S, Rathnamma D, Hemadri D, Isloor S, Geetha S, Reddy G B M, Sharada R and Rahman H. 2014. Phylogenetic analysis of recent classical swine fever isolates from Karnataka, India. Indian Journal of Animal Sciences 84: 236–39.

Shivaraj D, Patil S S, Rathnamma D, Sharada S and Desai G S. 2013. Molecular mechanism involved in the pathogenesis of Classical swine fever. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases 34(2): 1– 9.

Simon Brooker, Michael Beasley, Montanan Ndinaromtan, Ester Mobele Madjiouroum, Marie Baboguel, Elie Djenguinabe, Simon I Hay and Don A P Bundy. 2002. Use of remote sensing and a geographical information system in a national helminth control programme in Chad. Bulletin of the World Health Organization 80: 783–89.

Steven G Heeringa, James Wagner, Myriam Torres, NaihuaDuan, Terry Adams and Patricia Berglund. 2004. Sample designs and sampling methods for the Collaborative Psychiatric Epidemiology Studies (CPES). International Journal of Methods in Psychiatric Research 13(4): 221–40. DOI: https://doi.org/10.1002/mpr.179

Tsairidou S, Woolliams J A, Allen A R, Skuce R A, McBride S H, Pong-Wong R, Matika O, Finlay E K, Berry D P, Bradley D G, McDowell S W J, Glass E J and Bishop S C. 2014. A meta- analysis for bovine tuberculosis resistance in dairy cattle. 10th World Congress on Genetics Applied to Livestock Production. pp 1–3.

Valerie Isham. 2004. Stochastic Models for Epidemics. Department of Statistical Science, University College London. Willeberg P, Paisley L G and Lind P. 2011. Epidemiological models to support animal disease surveillance activities. Revue Scientifique et Technique 30(2): 603–14. DOI: https://doi.org/10.20506/rst.30.2.2059

Wilson James M V. 2007. A global detection and tracking system for biological events. Advances in Disease Surveillance 4(21). Wolfgang Viechtbauer. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36(3): 1–48. DOI: https://doi.org/10.18637/jss.v036.i03

Young J and Stevenson K B. 2008. Real-time surveillance and decision support: Optimizing infection control and antimicrobial choices at the point of care. American Journal of Infection Control 36: 67–74. DOI: https://doi.org/10.1016/j.ajic.2007.12.001

Zeng D, Chen H, Lynch C, Eidson M and Gotham I. 2005. Infectious disease informatics and outbreak detection. Medical Informatics: Knowledge Management and Data Mining in Biomedicine. (Eds) Chen H, Fuller S S, Friedman C and Hersh W. Springer, New York.

Downloads

Submitted

2017-05-08

Published

2017-05-09

Issue

Section

Review Article

How to Cite

SURESH, K. P., PATIL, S. S., YASASWINI, L., HEMADRI, D., DESAI, G. S., & RAHMAN, H. (2017). Role of infectious disease information system and risk assessment in control of livestock diseases in Indian perspectives: A review. The Indian Journal of Animal Sciences, 87(5), 536–545. https://doi.org/10.56093/ijans.v87i5.70218
Citation