TALEN construction for porcine IκBα gene and the detection of knockout activity

Authors

  • KUI XU Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China
  • JINXUE RUAN Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China
  • HEGANG LI Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China
  • TIANWEN WU Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China
  • BO LIANG Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China
  • YULIAN MU Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China

DOI:

https://doi.org/10.56093/ijans.v87i8.73417

Keywords:

IκBα gene, Porcine, Knockout, SSA, TALEN

Abstract

Xenotransplantation often causes severe immunological rejection. The IκBα (inhibitor of nuclear factor kappa B alpha) gene plays an important role in delayed immunological rejection. Research shows that IκBα mutations can mitigate delayed immunological rejection. In the present study, the first exon sequence of the porcine IκBα gene was used to construct a transcription activator-like effector nuclease (TALEN) plasmid pair, and we used the double-strand break repair via single strand annealing (SSA) method to examine the knockout efficiency of the TALEN plasmid pair. The results showed that the knockout activity was 3.955, and the difference was extremely significant compared with the control group. A TALEN plasmid pair targeting the first exon sequence of the IκBα gene, was successfully constructed for the first time, and this study lays the foundation for knocking out the porcine IκBα gene to mitigate the delayed immunological rejection induced by xenotransplantation.

Downloads

Download data is not yet available.

Author Biography

  • YULIAN MU, Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100 193 China

    Institute of Animal Science, Chinese Academy of Agricultural Sciences.

References

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A and Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–12. DOI: https://doi.org/10.1126/science.1178811

Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J and Voytas D F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757–61. DOI: https://doi.org/10.1534/genetics.110.120717

Cradick T J, Antico C J and Bao G. 2014. High-throughput cellular screening of engineered nuclease activity using the single- strand annealing assay and luciferase reporter. Methods Molecular Biology 1114: 339–52. DOI: https://doi.org/10.1007/978-1-62703-761-7_22

Ekser B, Rigotti P, Gridelli B and Cooper D K. 2009. Xenotransplantation of solid organs in the pig-to-primate model. Transplant Immunology 21: 87–92. DOI: https://doi.org/10.1016/j.trim.2008.10.005

Ferreiro D U and Komives E A. 2010. Molecular mechanisms of system control of NF-kappaB signaling by IκBα. Biochemistry 49: 1560–67. DOI: https://doi.org/10.1021/bi901948j

Griesemer A, Yamada K and Sykes M. 2014. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunology Review 258: 241–58. DOI: https://doi.org/10.1111/imr.12152

Ju H, Zhang J, Bai L, Mu Y, Du Y, Yang W, Li Y, Sheng A and Li K. 2015. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production. Science Report 5: 10152. DOI: https://doi.org/10.1038/srep10152

Le Bas-Bernardet S and Blancho G. 2009. Current cellular immunological hurdles in pig-to-primate xenotransplantation. Transplant Immunology 21: 60–64. DOI: https://doi.org/10.1016/j.trim.2008.10.006

Lee H J, Seo H S, Kim G J, Jeon C Y, Park J H, Jang B H, Park S J, Shin Y C and Ko S G. 2013. Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFκB signaling pathway in HMC-1 human mast cells. Molecular and Medicine Report 8: 731–36. DOI: https://doi.org/10.3892/mmr.2013.1585

Li T, Huang S, Jiang W Z, Wright D, Spalding M H, Weeks D P and Yang B. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39: 359–72. DOI: https://doi.org/10.1093/nar/gkq704

Mahfouz M M, Li L, Shamimuzzaman M, Wibowo A, Fang X and Zhu J K. 2011. De novo-engineered transcription activator- like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of National Academy of Science USA 108: 2623–28. DOI: https://doi.org/10.1073/pnas.1019533108

Majdalawieh A and Ro H S. 2010. Regulation of IκBα function and NF-IκBαB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflammation 2010: 823– 21. DOI: https://doi.org/10.1155/2010/823821

Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D and Rebar E J. 2011. A TALE nuclease architecture for efficient genome editing. National Biotechnology 29: 143–48. DOI: https://doi.org/10.1038/nbt.1755

Morbitzer R, Romer P, Boch J and Lahaye T. 2010. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proceedings of National Academy of Science USA 107: 21617– 22. DOI: https://doi.org/10.1073/pnas.1013133107

Moscou M J and Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501. DOI: https://doi.org/10.1126/science.1178817

Romer P, Recht S, Strauss T, Elsaesser J, Schornack S, Boch J, Wang S and Lahaye T. 2010. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytology 187: 1048–57. DOI: https://doi.org/10.1111/j.1469-8137.2010.03217.x

Ruan J, Liu N, Ouyang H, Yang S and Li K. 2014. Spatiotemporal control of porcine p65RHD expression by advanced Tet-On system in PIEC cells helps regulate NFsmall ka, CyrillicB activity. Molecular Biology Report 41: 1753–61. DOI: https://doi.org/10.1007/s11033-014-3024-x

Satyananda V, Hara H, Ezzelarab M B, Phelps C, Ayares D and Cooper D K. 2013. New concepts of immune modulation in xenotransplantation. Transplantation 96: 937–45. DOI: https://doi.org/10.1097/TP.0b013e31829bbcb2

Zhang F, Cong L, Lodato S, Kosuri S, Church G M and Arlotta P. 2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. National Biotechnology 29: 149–53. DOI: https://doi.org/10.1038/nbt.1775

Published

2017-08-24

Issue

Section

Articles

How to Cite

XU, K., RUAN, J., LI, H., WU, T., LIANG, B., & MU, Y. (2017). TALEN construction for porcine IκBα gene and the detection of knockout activity. The Indian Journal of Animal Sciences, 87(8), 939–943. https://doi.org/10.56093/ijans.v87i8.73417