Characterization of genetic polymorphisms in Toll-like receptor 9 gene of Bos indicus Sahiwal cattle


188 / 95 / 37

Authors

  • JYOTSNA DHINGRA BEHL ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • ANURODH SHARMA ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • R S KATARIA ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • N K VERMA ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • SHIV PRASAD KIMOTHI ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • AVNISH KUMAR BHATIA ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • RAHUL BEHL ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India

https://doi.org/10.56093/ijans.v87i11.75888

Keywords:

Genetic variability, Polymorphism, Sahiwal, SNPs, TLR 9

Abstract

Toll-like receptor 9 protein, located in the endosomal compartment, is a nucleotide-sensing Toll-like receptor
(TLR). It is activated by unmethylated cytidine-phosphate-guanosine dinucleotides (CpG ODN) in both viruses and bacteria, and is encoded by Toll-like receptor 9 gene, which was sequenced and characterized in the Bos indicus Sahiwal cattle breed. Eleven single nucleotide polymorphisms (SNPs) were detected within the 4.8 Kb region of the TLR9 gene. Eight of the SNPs were present in the coding region of the gene and the other 3 were present in the non-coding part of the gene. The SNP 2930(G>A) was non-synonymous leading to an amino acid change of G437E in the TLR9 protein. The other SNPs were synonymous. These SNPs led to generation of 11 most probable TLR9 gene haplotypes. The gene exhibited a nonsignificant value of Tajima's D which indicated it to be following the neutral mutation hypothesis.

Downloads

Download data is not yet available.

References

Akira S and Takeda K. 2004. Toll-like receptor signalling. Nature Reviews Immunology 4: 499–511. DOI: https://doi.org/10.1038/nri1391

Alfano F, Peletto S, Lucibelli M G, Borriello G, Urciuolo G, Maniaci M G, Desiato R, Tarantino M, Barone A, Pasquali P, Acutis P L and Galiiero G. 2014. Identification of single nucleotide polymorphisms in Toll-like receptor candidate genes associated with tuberculosis infection in water buffalo (Bubalus bubalis). BMC Genetics 15: 139. DOI: https://doi.org/10.1186/s12863-014-0139-y

Allendorf F W, Hohenlohe P A and Luikart G. 2010. Genomics and the future of conservation genetics. Nature Reviews Genetics 11: 697–709. DOI: https://doi.org/10.1038/nrg2844

Arsenault R J, Yue L, Maattanen P, Scruten E and Dolg K. 2013. Altered toll-like receptor 9 signalling in Mycobacterium avium subsp. paratuberculosis – infected bovine monocytes reveals potential therapeautic targets. Infection and Immunity 81(1): 226–37. DOI: https://doi.org/10.1128/IAI.00785-12

Banerjee P, Joshi J, Sharma U, Tantia M S and Vijh R K. 2011. Sequence and phylogenetic analysis of Toll like receptor genes TLR-3 and TLR-9 in buffaloes. Indian Journal of Animal Sciences 81(12): 1225–30.

Bowie A G and Haga I R. 2006. The role of Toll-like receptors in the host response to viruses. Molecular Immunology 42: 859– 67. DOI: https://doi.org/10.1016/j.molimm.2004.11.007

Cargill E J and Womack J E. 2007. Detection of polymorphisms in bovine toll-like receptors 3, 7, 8 and 9. Genomics 89: 745–55. DOI: https://doi.org/10.1016/j.ygeno.2007.02.008

den Dunnen J T and Antonarakis S E. 2000. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human Mutation 15(1): 7–12. Erratum in Human Mutation 20(5): 403. DOI: https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N

Garvin M R, Saitoh K and Gharett A J. 2010. Application of single nucleotide polymorphisms to non-model species: a technical review. Molecular Ecology Resources 10: 915–34. DOI: https://doi.org/10.1111/j.1755-0998.2010.02891.x

Glass E J, Preston P M, Springbett A, Craigmile S, Kirvar E, Wilkie G and Duncan Brown C G. 2005. Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. International Journal of Parasitology 35: 337–47. DOI: https://doi.org/10.1016/j.ijpara.2004.12.006

Griebel P J, Brownlie R, Manuja A, Nichani A, Mookherjee N, Popowych Y, Mutwiri G, Hecker R and Babiuk L A. 2005. Bovine toll-like receptor-9: A comparative analysis of molecular structure, function and expression. Veterinary Immunology and Immunopathology 108: 11–16. DOI: https://doi.org/10.1016/j.vetimm.2005.07.012

Haynes G D and Latch E K. 2012. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the Bovine SNP50 beadchip. PLoS ONE 7(5): e36536. DOI: https://doi.org/10.1371/journal.pone.0036536

Hemmi H and Akira S. 2005. TLR signaling and the function of dendritic cells. Chemical Immunology and Allergy 86: 120– 35. DOI: https://doi.org/10.1159/000086657

Jungi T W, Farhat K, Burgenu I A and Werling D. 2011. Toll-like receptors in domestic animals. Cell and Tissue Research 343: 107–20. DOI: https://doi.org/10.1007/s00441-010-1047-8

Lakshmi R, Jayavardhanan K K and Aravindakshan T V. 2016. Characterization of promoter sequence of Toll-like receptor genes in Vechur cattle. Veterinary World 9(6): 626–32. DOI: https://doi.org/10.14202/vetworld.2016.626-632

Librado P and Rozas J. 2009. DNASPv5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–52. DOI: https://doi.org/10.1093/bioinformatics/btp187

Letunic I, Doerks T and Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acid Research 40(DI): D302–D305. DOI: https://doi.org/10.1093/nar/gkr931

Mason I L. 1996. A World Dictionary of Livestock Breeds. Types and Varieties. 4th edn. CAB International, Wallingford, UK.

McGuire K, Jones M, Werling D, Williams J L, Glass E J and Jann O. 2005. Radiation hybrid mapping of all 10 characterized bovine Toll-like receptors. Animal Genetics 37: 47–50. DOI: https://doi.org/10.1111/j.1365-2052.2005.01364.x

Nivsarkar A E, Vij P K and Tantia M S. 2000. Animal Genetic Resources of India – Cattle and Buffaloes. pp 79–82. Directorate of Information and Publication of Agriculture. Indian Council of Agricultural Research.

Sambrook J, Frotsh E F and Maniatis T. 1989. Molecular Cloning: a Laboratory Manual. 2nd edn. Cold Spring Harbour Laboratory Press, New York.

Sanders M S, van Well G T J, Ouburg S, Morre S A and van Furth A M. 2012. Toll-like receptor 9 polymorphisms are associated with severity variables in a cohort of meningococcal meningitis survivors. BMC Infectious Diseases 12: 112. DOI: https://doi.org/10.1186/1471-2334-12-112

Sarafidou T, Stamatis C, Kalozoumi G, Spyrou V and Fthenakis G C. 2013. Toll like Receptor 9 (TLR9) polymorphism G520R in sheep is associated with seropositivity for small ruminant lentivirus. PLoS ONE 8(5): e63901. DOI: https://doi.org/10.1371/journal.pone.0063901

Seeb J E, Carvalho G, Hauser L, Naish K and Roberts S. 2011. Single nucleotide polymorphism (SNP) discovery and application of SNP genotyping in non-model organisms. Molecular Ecology Resources 11: 1–8. DOI: https://doi.org/10.1111/j.1755-0998.2010.02979.x

Schneberger D, Lewis D, Caldwell S and Singh B. 2011. Expression of Toll-like receptor 9 in lungs of pigs, dogs and cattle. International Journal of Experimental Pathology 92: 1–7. DOI: https://doi.org/10.1111/j.1365-2613.2010.00742.x

Schultz J, Milpetz F, Bork P and Ponting C P. 1998. SMART, a simple modular architecture research tool: Identification of signaling domains. PNAS 95(11): 5857–64. DOI: https://doi.org/10.1073/pnas.95.11.5857

Slate J, Santure A W, Feulner P G D, Brown E A and Ball A D. 2010. Genome mapping of intensively studied wild vertebrate populations. Trends in Genetics 26: 275–84. DOI: https://doi.org/10.1016/j.tig.2010.03.005

Stephens M and Donnelly P. 2003. A comparison of Bayesian methods for haplotype reconstruction. American Journal of Human Genetics 73: 1162–69. DOI: https://doi.org/10.1086/379378

Stephens M, Smith N J and Donnelly P. 2001. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68: 978–89. DOI: https://doi.org/10.1086/319501

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–95. DOI: https://doi.org/10.1093/genetics/123.3.585

Takeda K and Akira S. 2005. Toll-like receptors in innate immunity. International Immunology 17(1): 1–14. DOI: https://doi.org/10.1093/intimm/dxh186

Tanake J, Sugimoto K, Shiraki K, Tameda M, Kusagawa S, Nijora K, Beppu T, Yoneda K, Yamamoto N, Uchida K, Kojima T and Takei Y. 2010. Functional cell surface expression of toll- like receptor 9 promotes cell proliferation and survival in human hepatocellular carcinomas. International Journal of Oncology 37: 805–14. DOI: https://doi.org/10.3892/ijo_00000730

Uematsu S and Akira S. 2006. Toll-like receptors and innate immunity. Journal of Molecular Medicine 84: 712–25. DOI: https://doi.org/10.1007/s00109-006-0084-y

Werling D and Jungi T W. 2003. Toll-like receptors linking innate and adaptive immune response. Veterinary Immunology and Immunopathology 91: 1–12. DOI: https://doi.org/10.1016/S0165-2427(02)00228-3

Werling D, Hope J C, Howard C J and Jungi T W. 2004. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists. Immunology 111: 41–52. DOI: https://doi.org/10.1111/j.1365-2567.2004.01781.x

Yeh F C, Yang R, Boyle T J, Ya Z and Xiyan J M. 2000. Popgene 32, Microsoft Windows based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmontin, Alberta, Canada.

Submitted

2017-11-16

Published

2017-11-17

Issue

Section

Articles

How to Cite

BEHL, J. D., SHARMA, A., KATARIA, R. S., VERMA, N. K., KIMOTHI, S. P., BHATIA, A. K., & BEHL, R. (2017). Characterization of genetic polymorphisms in Toll-like receptor 9 gene of Bos indicus Sahiwal cattle. The Indian Journal of Animal Sciences, 87(11), 1362–1366. https://doi.org/10.56093/ijans.v87i11.75888
Citation