Reference gene selection for quantitative real-time RT-PCR normalization in Clarias magur at different larval developmental stages


220 / 66

Authors

  • ISHFAQ NAZIR MIR PhD Scholar, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400 061 India
  • P P SRIVASTAVA Principal Scientist, Division of Fish Nutrition, Biochemistry and Physiology, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400 061 India
  • I A BHAT PhD Scholar, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400 061 India
  • A P MURALIDHAR Scientist, Kakinada Centre, ICAR-CIFE, Mumbai
  • GIREESH-BABU P Scientist, Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400 061 India
  • TINCY VARGHESE Scientist, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400 061 India
  • THONGAM IBEMCHA CHANU Scientist, Kakinada Centre, ICAR-CIFE, Mumbai
  • K K JAIN Principal Scientist, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400 061 India

https://doi.org/10.56093/ijans.v88i3.78386

Keywords:

β-actin, Clarias magur, Larval development stages, qRT-PCR, Reference gene

Abstract

Reference genes employed for normalizing quantitative PCR data are important for the accurate analysis of gene expression. To date, no reference genes have been screened for developmental gene expression studies in Clarias magur. In the present study, three commonly used and constitutively expressed genes viz. beta actin (β- actin), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elongation factor-alpha 1 (EFa1) were examined for their efficacy as internal control to avoid any variation during qRT-PCR expression analysis at different developmental stages of C. magur. All the selected housekeeping genes showed a variable level of mRNA expression during the developmental stages of C. magur. Using three independent statistical algorithms (delta-CT, BestKeeper and NormFinder), β-actin and GAPDH were identified as the suitable genes at different developmental stages. However, comprehensive gene stability evaluation denoted β-actin to be the most stable gene for carrying any gene expression studies. The present results, recommend β-actin as the optimal housekeeping gene for qRT-PCR analysis during different developmental stages of C. magur.

Downloads

Download data is not yet available.

References

Andersen C L, Jensen J L and Orntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64(15): 5245–50. DOI: https://doi.org/10.1158/0008-5472.CAN-04-0496

Bhat I A, Rather M A, Saha R, Ganie P A and Sharma R. 2015. Identification and expression analysis of thyroid stimulating hormone receptor (TSHR) in fish gonads following LHRH treatment. Proceedings of the National Academy of Sciences India, Sect B Biol Sci 87(3): 719–26. DOI: https://doi.org/10.1007/s40011-015-0640-8

Bhat I A, Rather M A, Saha R, Pathakota G B, Pavan-Kumar A and Sharma R. 2016a. Expression analysis of Sox9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clarias batrachus. Reseach in Veterinary Science 106: 100–106. DOI: https://doi.org/10.1016/j.rvsc.2016.03.022

Bhat I A, Rather M A, Jaffer Y D and Sharma R. 2016b. Molecular cloning, computational analysis and expression pattern of forkhead box l2 (Foxl2) gene in catfish. Computational Biology and Chemistry 64: 9–18. DOI: https://doi.org/10.1016/j.compbiolchem.2016.05.001

Bonefeld B E, Elfving B and Wegener G. 2008. Reference genes for normalization: a study of rat brain tissue. Synapse 62(4): 302–09. DOI: https://doi.org/10.1002/syn.20496

Butte A J, Dzau V J and Glueck S B. 2001. Further defining housekeeping, or “maintenance,” genes focus on “A compendium of gene expression in normal human tissues”. Physiological Genomics 7(2): 95–96. DOI: https://doi.org/10.1152/physiolgenomics.2001.7.2.95

Czechowski T, Stitt M, Altmann T, Udvardi M K and Scheible W R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139(1): 5–17. DOI: https://doi.org/10.1104/pp.105.063743

Devassy A, Kumar R, Shajitha P P, John R, Padmakumar K G, Basheer V S, Gopalakrishnan A and Mathew L. 2016. Genetic identification and phylogenetic relationships of Indian clariids based on mitochondrial COI sequences. Mitochondrial DNA Part A 27: 3777–80. DOI: https://doi.org/10.3109/19401736.2015.1079901

Dheda K, Huggett J F, Chang J S, Kim L U, Bustin S A, Johnson M A and Zumla A. 2005. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Analytical Biochemistry 344(1): 141– 43. DOI: https://doi.org/10.1016/j.ab.2005.05.022

Eisenberg E and Levanon E Y. 2003. Human housekeeping genes are compact. Trends in Genetics 19(7): 362–65. DOI: https://doi.org/10.1016/S0168-9525(03)00140-9

Gimeno J, Eattock N, Van-Deynze A and Blumwald E. 2014. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PLoS One 9(3): e91474. DOI: https://doi.org/10.1371/journal.pone.0091474

Huang R, Gao L Y, Wang Y P, Hu W and Guo Q L. 2009. Structure, organization and expression of common carp (Cyprinus carpio L.) NKEF-B gene. Fish and Shellfish Immunology 26(2): 220– 29. DOI: https://doi.org/10.1016/j.fsi.2008.10.013

Imai T, Ubi B E, Saito T and Moriguchi T. 2014. Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS One 9(1): e86492. DOI: https://doi.org/10.1371/journal.pone.0086492

Jorgensen S M, Kleveland E J, Grimholt U and Gjoen T. 2006. Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Marine Biotechnology 8(4): 398–408. DOI: https://doi.org/10.1007/s10126-005-5164-4

Lee P D, Sladek R, Greenwood C M and Hudson T J. 2002. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Research 12(2): 292–97. DOI: https://doi.org/10.1101/gr.217802

Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4): 402–08. DOI: https://doi.org/10.1006/meth.2001.1262

Ng H H and Kottelat M. 2008. The identity of Clarias batrachus (Linnaeus, 1758), with the designation of a neotype (Teleostei: Clariidae). Zoological Journal of the Linnean Society 153: 725–32. DOI: https://doi.org/10.1111/j.1096-3642.2008.00391.x

Paria A, Dong J, Babu P P, Makesh M, Chaudhari A, Thirunavukkarasu A R and Rajendran K V. 2016. Evaluation of candidate reference genes for quantitative expression studies in Asian seabass (Lates calcarifer) during ontogenesis and in tissues of healthy and infected fishes. Indian Journal of Experimental Biology 54: 597–605.

Pfaffl M W, Tichopad A, Prgomet C and Neuvians T P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper– Excel-based tool using pair-wise correlations. Biotechnology Letters 26(6): 509–15. DOI: https://doi.org/10.1023/B:BILE.0000019559.84305.47

Rajeevan M S, Ranamukhaarachchi D G, Vernon S D and Unger E R. 2001. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25(4): 443–51. DOI: https://doi.org/10.1006/meth.2001.1266

Silver N, Best S, Jiang J and Thein S L. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7: 33. DOI: https://doi.org/10.1186/1471-2199-7-33

Suzuki T, Higgins P J and Crawford D R. 2000. Control selection for RNA quantitation. Biotechniques 29(2): 332–37. DOI: https://doi.org/10.2144/00292rv02

Szabo A, Perou C M, Karaca M, Perreard L, Quackenbush J F and Bernard P S. 2004. Statistical modeling for selecting housekeeper genes. Genome Biology 5(8): R59. DOI: https://doi.org/10.1186/gb-2004-5-8-r59

Thellin O, Zorzi W, Lakaye B, De-Borman B, Coumans B, Hennen G and Heinen E. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75(2): 291– 95. DOI: https://doi.org/10.1016/S0168-1656(99)00163-7

Ye X, Zhang L, Dong H, Tian Y and Lao H. 2010. Validation of reference genes of grass carp Ctenopharyngodon idellus for the normalization of quantitative real-time PCR. Biotechnology Letters 32: 1031–38. DOI: https://doi.org/10.1007/s10529-010-0258-0

Downloads

Submitted

2018-03-26

Published

2018-03-26

Issue

Section

Articles

How to Cite

MIR, I. N., SRIVASTAVA, P. P., BHAT, I. A., MURALIDHAR, A. P., P, G.-B., VARGHESE, T., CHANU, T. I., & JAIN, K. K. (2018). Reference gene selection for quantitative real-time RT-PCR normalization in Clarias magur at different larval developmental stages. The Indian Journal of Animal Sciences, 88(3), 380-382. https://doi.org/10.56093/ijans.v88i3.78386
Citation