Phylogenetic analysis of sheep pox virus (SPPV) virion core protein P4a gene revealed extensive sequence conservation among capripox viruses


Abstract views: 226 / PDF downloads: 36

Authors

  • BINA MISHRA Principal Scientist, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
  • G RAVI KUMAR Principal Scientist, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
  • SONAL SONAL Scientist, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
  • C L PATEL Scientist, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
  • V K CHATURVEDI Principal Scientist, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India

https://doi.org/10.56093/ijans.v88i1.79420

Keywords:

Capripox viruses, Phylogenetic analysis, Sheep pox virus, Virion core protein P4a gene

Abstract

In the present study, virion core protein P4a gene was PCR amplified from sheep pox virus (SPPV) Jaipur isolate and Roumanian Fanar (RF) vaccine strain adapted and propagated in lamb testis/vero cells. Gene specific primers were designed for amplification of P4a gene. Amplified P4a gene fragment was sequence characterized and 808 bp sequence was compared across SPPV, GTPV and LSDV isolates available in GenBank database which revealed extensive sequence conservation of 97% to 100% within pox virus groups. Sheep pox virus Jaipur isolate was found closely placed with Roumaninan Fanar (RF) and TU isolates. Further, phylogenetic analysis of P4a gene sequence indicated three distinct clusters of Capripox viruses with GTPV interestingly placed closely to LSDV group.

Downloads

Download data is not yet available.

References

Bergallo M, Costa C, Gribaudo G, Tarallo S, Baro S, Negro Ponzi A and Cavallo R. 2006. Evaluation of six methods for extraction and purification of viral DNA from urine and serum samples. New Microbiologica 29: 111–19.

Bhanuprakash V, Indrani B K, Hosamani M and Singh R K. 2006. The current status of sheep pox disease. Comparative Immunology Microbiology and Infectious Diseases 29: 27– 60. DOI: https://doi.org/10.1016/j.cimid.2005.12.001

Dialo and Viljoen G J. 2007. Genus Capripoxvirus. pp. 167–181. Poxviruses. (Eds) Mercer A A, Schmidt A and Weber O F. Basel, Birkhauser. DOI: https://doi.org/10.1007/978-3-7643-7557-7_8

Esposito J J and Fenner F. Poxviruses in fields. Fields Virology. (Eds) Howley P M, Knipe D M, Lippincott W. Wilkins Publishers, Philadelphia, USA, pp 2885–2921.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–91. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Goff C L, Lamien C E, Fakhfakh E, Chadeyras A, Aba-Adulugba E, Libeau G, Tuppurainen E, Wallace D B, Adam T, Silber R, Gulyaz V, Madani H, Caufour P, Hammami S, Diallo A and Albina E. 2009. Capripoxvirus G protein-coupled chemokine receptor: a host-range gene suitable for virus animal origin discrimination. Journal of General Virology 90: 1967–77. DOI: https://doi.org/10.1099/vir.0.010686-0

Gubser C, Hué S, Kellam P and Smith G L. 2004. Poxvirus genomes: a phylogenetic analysis. Journal of General Virology 85: 105–17. DOI: https://doi.org/10.1099/vir.0.19565-0

Heljasvaara R, Rodríguez D, Risco C, Carrascosa J L, Esteban M and Rodríguez J R. 2001. The major core protein P4a (A10L gene) of vaccinia virus is essential for correct assembly of viral dna into the nucleoprotein complex to form immature viral particles. Journal of Virology 75(13): 5778–95. DOI: https://doi.org/10.1128/JVI.75.13.5778-5795.2001

Hosamani M, Mondal B, Tembhurne P A, Bandyopadhyay S K, Singh R K and Rasool T J. 2004. Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene. Virus Genes 29(1): 73–80. DOI: https://doi.org/10.1023/B:VIRU.0000032790.16751.13

Kitching R P, Bhat P P and Black D. N. 1989. The characterization of African strains of capripoxvirus. Epidemiology and Infection 102: 335–43. DOI: https://doi.org/10.1017/S0950268800030016

Saitou N and Nei M. 1987. The neighbour joining method : a new method for reconstructing phylogenetic trees. Molecular Biology Evolution 4: 406–25.

Stram Y, Kuznetzova L, Friedgut O, Gelman B, Yaden H and Rubinstein Guini M. 2008. The use of lumpy skin disease virus genome termini for detection and phylogenetic analysis. Journal of Virological Methods 151: 225–29. DOI: https://doi.org/10.1016/j.jviromet.2008.05.003

Tamura K, Dudley J, Nei M and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–99. DOI: https://doi.org/10.1093/molbev/msm092

Tulman E R, Afonso C L, Lu Z, Zsak L, Sur J H, Sandybaev N T, Kerembekova U Z, Zaitsev V L, Kutish G F and Rock D L. 2002. The genomes of sheeppox and goatpox viruses. Journal of. Virology 76(12): 6054–61. DOI: https://doi.org/10.1128/JVI.76.12.6054-6061.2002

Downloads

Submitted

2018-05-04

Published

2018-05-07

Issue

Section

Articles

How to Cite

MISHRA, B., KUMAR, G. R., SONAL, S., PATEL, C. L., & CHATURVEDI, V. K. (2018). Phylogenetic analysis of sheep pox virus (SPPV) virion core protein P4a gene revealed extensive sequence conservation among capripox viruses. The Indian Journal of Animal Sciences, 88(1), 21-24. https://doi.org/10.56093/ijans.v88i1.79420
Citation