Characterization and in vitro expression studies of a potential xenogeneic DNA vaccine against canine mammary tumours


183 / 70

Authors

  • PAVAN KUMAR YADAV ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • SHISHIR KUMAR GUPTA ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • SAROJ KUMAR ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • MOHINI SAINI ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • SUMIT RANJAN MISHRA ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • P NANDAKUMAR ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
  • MEENA KATARIA ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

https://doi.org/10.56093/ijans.v87i12.79829

Keywords:

Cancer, Interleukin-18, Matrix metalloproteinase-7, Tumour, Xenogeneic DNA vaccine

Abstract

Matrix metalloproteinases-7 (MMP-7) which is expressed in a wide variety of malignant cells has been seen to
be extensively up-regulated in mammary carcinomas. MMP-7 can promote cancer invasion and angiogenesis through proteolytic cleavage of extracellular matrix and basement membrane proteins. This property of MMP-7 makes it a promising target in the context of immunotherapy. Further, to enhance DNA-based immunization, a cytokine gene can be employed as an adjuvant. Interleukin-18 (IL-18) is a Th1-type cytokine that has been demonstrated as a potential biological adjuvant in murine tumour models. The present study was undertaken to clone murine MMP-7 (mMMP-7) and IL-18 genes in pVIVO2.mcs eukaryotic expression vector and to characterize their expression by immunofluorescence and Western blotting. This double gene construct now may be used as a potential xenogeneic DNA vaccine against canine tumour model.

Downloads

Download data is not yet available.

References

Adachi Y, Yamamoto H, Itoh F, Arimura Y, Nishi M, Endo T and Imai K. 2001. Clinicopathologic and prognostic significance of matrilysin expression at the invasive front in human colorectal cancers. International Journal of Cancer 95: 290– 94. DOI: https://doi.org/10.1002/1097-0215(20010920)95:5<290::AID-IJC1050>3.0.CO;2-I

Chang C and Werb Z. 2001. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends in Cell Biology 11(11): 37–43. DOI: https://doi.org/10.1016/S0962-8924(01)02122-5

Davidson B, Stavnes H T, Risberg B, Nesland J M, Wohlschlaeger J, Yang Y, Shih Ie M and Wang T L. 2012. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Human Pathology 43: 684–94. DOI: https://doi.org/10.1016/j.humpath.2011.06.015

Davidson B, Stavnes H T, Holth A, Chen X, Yang Y, Shih Ie M and Wang T L. 2011. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. Journal of Cellular and Molecular Medicine 15(3): 535–44. DOI: https://doi.org/10.1111/j.1582-4934.2010.01019.x

Dunn T. 1997. Oxygen and cancer. North Carolina Medical Journal 58(2): 140–43.

Fan K, Gao L and Yan X. 2013. Human ferritin for tumour detection and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 5(4): 287–98. DOI: https://doi.org/10.1002/wnan.1221

Ii M, Yamamoto H, Adachi Y, Maruyama Y and Shinomura Y. 2006. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Experimental Biology and Medicine 231: 20–27. DOI: https://doi.org/10.1177/153537020623100103

Li Q, Park P W, Wilson C L and Parks W C. 2002. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111: 635–46. DOI: https://doi.org/10.1016/S0092-8674(02)01079-6

Marshall D J, Rudnick K A, McCarthy S G, Mateo L R, Harris M C, McCauley C and Snyder L A. 2006. Interleukin-18 enhances Th1 immunity and tumour protection of a DNA vaccine. Vaccine 24: 244–53. DOI: https://doi.org/10.1016/j.vaccine.2005.07.087

Micallef M J, Yoshida K, Kawai S, Hanaya T, Kohno K, Arai S, Tanimoto T, Torigoe K, Fujii M, Ikeda M and Kurimoto M. 1997. In vivo antitumor effects of murine interferon- gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunology, Immunotherapy 43(6): 361–67. DOI: https://doi.org/10.1007/s002620050345

Miyazaki K, Hattori Y, Urnenishi F, Yasumitsu H and Urneda M. 1990. Purification and characterization of extracellular matrix- degrading metalloproteinase, matrin (pump-a), secreted from human rectal carcinoma cell line. Cancer Research 50(24): 7758–64.

Nagase H, Visse R and Murphy G. 2006. Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research 69(3): 562–73. DOI: https://doi.org/10.1016/j.cardiores.2005.12.002

Nelson A R, Fingleton B, Rothenberg M L and Matrisian L M. 2000. Matrix metalloproteinases: biologic activity and clinical implications. Journal of Clinical Oncology 18: 1135–49. DOI: https://doi.org/10.1200/JCO.2000.18.5.1135

Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y and Hattori K. 1995. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378: 88–91. DOI: https://doi.org/10.1038/378088a0

Osaki T, Peron J M, Cai Q, Okamura H, Robbins P D, Kurimoto M, Lotze M T and Tahara H. 1998. IFN-gamma-inducing factor/IL-18 administration mediates IFN- gamma-and IL-12- independent anti-tumor. Journal of Immunology 160:1742– 49. DOI: https://doi.org/10.4049/jimmunol.160.4.1742

Su J M, Wei Y Q, Tian L, Zhao X et al. 2003. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Research 63: 600–07.

Tan X, Egami H, Ishikawa S, Sugita H, Kamohara H, Nakagawa M, Nozawa F, Abe M and Ogawa M. 2005. Involvement of matrix metalloproteinase-7 in invasion-metastasis through induction of cell dissociation in pancreatic cancer. International Journal of Oncology 26: 1283–89. DOI: https://doi.org/10.3892/ijo.26.5.1283

van der Loos C. 2008. User Protocol: Practical Guide to Multiple Staining.

Wei Y Q, Wang Q R, Zhao X et al. 2000. Immunotherapy of tumours with xenogeneic endothelial cells as a vaccine. Nature Medicine 6: 1160–66. DOI: https://doi.org/10.1038/80506

Westermarck J and Kahari V M. 1999. Regulation of matrix metalloproteinase expression in tumour invasion. Federation of American Societies for Experimental Biology 13(8): 781–92. DOI: https://doi.org/10.1096/fasebj.13.8.781

Wielockx B, Libert C and Wilson C. 2004. Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation? Cytokine and Growth Factor Reviews 15 (2–3): 111–15. DOI: https://doi.org/10.1016/j.cytogfr.2003.12.001

Woessner J F Jr and Taplin C J. 1988. Purification and properties of a small latent matrix metalloproteinase of the rat uterus. Journal of Biological Chemistry 263(32): 16918–25. DOI: https://doi.org/10.1016/S0021-9258(18)37479-9

Yadav P K, Kumar B V, Chanu V, Yadav B S, Kumar A and Kataria M. 2015. Recombinant tissue inhibitor of metelloproteinase-3 from canine mammary tumour induces apoptosis in vitro. Indian Journal of Animal Sciences 85(6): 588–92.

Downloads

Submitted

2018-05-16

Published

2018-05-16

Issue

Section

Articles

How to Cite

YADAV, P. K., GUPTA, S. K., KUMAR, S., SAINI, M., MISHRA, S. R., NANDAKUMAR, P., & KATARIA, M. (2018). Characterization and in vitro expression studies of a potential xenogeneic DNA vaccine against canine mammary tumours. The Indian Journal of Animal Sciences, 87(12), 1480–1484. https://doi.org/10.56093/ijans.v87i12.79829
Citation