Effect of oxytocin on in vitro prostaglandin production and expression of PGFS and PGES mRNAs in buffalo corpus luteum


Abstract views: 178 / PDF downloads: 56

Authors

  • M K TRIPATHI Scientist, Division of Livestock and Fish Management, ICAR Research Complex for Eastern Region, Patna, Bihar, India
  • S MONDAL
  • A MOR PhD Scholar, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560 030 India
  • I J REDDY Principal Scientist, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560 030 India

https://doi.org/10.56093/ijans.v88i10.84082

Keywords:

Corpus Luteum, Prostaglandin F2α, Prostaglandin E2, Oxytocin

Abstract

The present study investigated the effect of various doses of oxytocin on in vitro PGF2α and PGE2 production and expression profiling of PGFS and PGES mRNA in buffalo CL. Buffalo ovaries with mid-luteal phase CL were collected from the abattoir and CL was separated from surrounding tissues, chopped, rinsed with HBSS medium supplemented with gentamicin and BSA and incubated at 37°C for 1 h in HBSS containing collagenase. The cell suspension following filtration was treated with increasing doses of oxytocin (1, 10, 102, 103 and 104 ng/ml) and cultured at 38.5ºC, 5% CO2 level for 24 h. The production of PGF2α and PGE2 were not significantly different among different treatment groups as compared to control. The expression of PGES and PGFS mRNAs were not significantly different among different treatment groups as compared to control. It can be concluded that oxytocin may not directly stimulate PGF2α and PGE2 production in mid-luteal stage buffalo corpus luteum.

Downloads

Download data is not yet available.

Author Biography

  • S MONDAL
    Principal Scientist,  ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560 030 India

References

Akinlosotu B A, Diehl J R and Gimenez T. 1986. Sparing effects of intrauterine treatment with prostaglandin E2 on luteal function in cycling gilts. Prostaglandins 32: 291–99. DOI: https://doi.org/10.1016/0090-6980(86)90132-2

Arosh J A, Banu S K, Chapdelaine P, Madore E, Sirois J and Fortier M A. 2004. Prostaglandin biosynthesis, transport, and signaling in corpus luteum: a basis for autoregulation of luteal function. Endocrinology 145: 2551–60. DOI: https://doi.org/10.1210/en.2003-1607

Auletta F J and Flinta P F. 1988. Mechanisms controlling corpus luteum function in sheep, cows, non-human primates, and women, especially in relation to the time of luteolysis. Endocrinology 9: 88–105. DOI: https://doi.org/10.1210/edrv-9-1-88

Balaguer S. 1999. Early pregnancy responsiveness to an oxytocin challenge. J Undergraduate Research University Scholars Program, University of Florida.

Bennegård-Edén B, Hahlin M and Kindahl H. 1995. Interaction between oxytocin and prostaglandin F2 alpha in human corpus luteum. Human Reproduction 10: 2320–24. DOI: https://doi.org/10.1093/oxfordjournals.humrep.a136293

Brozos C N, Pancarci M S, Valencia J, Beindorff N, Tsousis G, Kiossis E and Bollwein H. 2012. Effect of oxytocin infusion on luteal blood flow and progesterone secretion in dairy cattle. Journal of Veterinary Science 13: 67–71. DOI: https://doi.org/10.4142/jvs.2012.13.1.67

Cao L and Chan W Y. 1993. Effects of oxytocin and uterine and luteal prostaglandins on the functional regression of the corpus luteum in pseudopregnant rats. Journal of Reproduction and Fertility 99: 181–86. DOI: https://doi.org/10.1530/jrf.0.0990181

Christenson L K, Farley D B, Anderson L H and Ford S P. 1994. Luteal maintenance during early pregnancy in the pig: role for prostaglandin E2. Prostaglandins 47: 61–75. DOI: https://doi.org/10.1016/0090-6980(94)90075-2

Davis J S and Rueda B R. 2002. The corpus luteum: An ovarian structure with maternal instincts and suicidal tendencies. Frontiers in Bioscience 7: 1949–78. DOI: https://doi.org/10.2741/A891

Diaz F J, Andersona L E, Wua Y L, Rabota S J, Tsai B and Wiltbank M C. 2002. Regulation of progesterone and prostaglandin F2α production in the CL. Molecular and Cellular Endocrinology 191: 65–80. DOI: https://doi.org/10.1016/S0303-7207(02)00056-4

Diaz F J, Crenshaw T D and Wiltbank M C. 2000. Prostaglandin F2α induces distinct physiological responses in porcine corpora lutea after acquisition of luteolytic capacity. Biology of Reproduction 63: 1504–12. DOI: https://doi.org/10.1095/biolreprod63.5.1504

Fuchs A R, Rollyson M K, Meyer M, Fields M J, Minix J M and Randel R D. 1996. Oxytocin induces prostaglandin F2release in pregnant cows: Influence of gestational age and oxytocin receptor concentrations. Biology of Reproduction 54: 647–53. DOI: https://doi.org/10.1095/biolreprod54.3.647

Ghosh J and Mondal S. 2006. Nucleic acids and protein content in relation to growth and regression of buffalo corpora lutea. Animal Reproduction Science 93: 316–27. DOI: https://doi.org/10.1016/j.anireprosci.2005.08.004

Grazul A T, Kirsch J D, Slanger W D, Marchello M J and Redmer D A. 1989. PGF2, oxytocin and progesterone secretion by bovine luteal cells at several stages of luteal development: effects of oxytocin, luteinizing hormone, PGF2α and estradiol- 17. Prostaglandins 38: 307–18. DOI: https://doi.org/10.1016/0090-6980(89)90135-4

Humbolt P. 2001. Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenology 56: 1417–33. DOI: https://doi.org/10.1016/S0093-691X(01)00644-6

Kotwica G, Franczak A, Okrasa S and Kotwica J. 1999. Effect of an oxytocin antagonist on prostaglandin F2 alpha secretion and the course of luteolysis in sows. Acta Veterinaria Hungarica 4: 249–62. DOI: https://doi.org/10.1556/004.47.1999.2.10

Levy N, Kobayashi S, Roth Z, Wolfenson D, Miyamoto A and Meidan R. 2006. Administration of prostaglandin F2during the early bovine luteal phase does not alter the expression of ET-1 and of its type A receptor: a possible cause for corpus luteum refractoriness. Biology of Reproduction 3: 377–82. DOI: https://doi.org/10.1095/biolreprod63.2.377

Miyamoto A and Schams D. 1991. Oxytocin stimulates progesterone release from microdialyzed bovine corpus luteum in vitro. Biology of Reproduction 44: 1163–70. DOI: https://doi.org/10.1095/biolreprod44.6.1163

Mondal S and Prakash B S. 2002. Comparison of luteal function between cows and buffaloes during estrous cycle. Indian Journal of Dairy Sciences 55: 142–44.

Mondal S, Kumar V, Reddy I J and Singh K. 2004. Progesterone and nucleic acid contents of buffalo corpus luteum in relation to stages of estrous cycle. Indian Journal of Animal Sciences 6: 710–12.

Mondal S, Nandi S and Reddy I J. 2013. Isolation and characterization of luteal cells in buffalo (Bubalus bubalis). Indian Journal of Physiology and Pharmacology 57: 1–6.

Mondal S, Nandi S, Reddy I J and Suresh K P. 2009. Isolation, culture and characterization of endometrial epithelial cells in buffalo (Bubalus bubalis). Buffalo Bulletin 28: 101–06.

Mondal S, Nandi S, Reddy I J and Suresh K P. 2010. Isolation, culture and characterization of endometrial stromal cells in buffalo (Bubalus bubalis). Indian Journal of Animal Sciences 79: 24–26.

Olofsson J, Norjavaara E and Selstam G. 1992. Synthesis of prostaglandin F2 alpha, E2 and prostacyclin in isolated corpora lutea of adult pseudopregnant rats throughout the luteal lifespan. Prostaglandins, Leukotrienes and Essential Fatty Acids 46: 151–61. DOI: https://doi.org/10.1016/0952-3278(92)90222-5

Rozen S and Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers, pp. 365–386. Methods in Molecular Biology. (Eds) Kravetz S and Minsener S. Humana Press, Totown, NJ. DOI: https://doi.org/10.1385/1-59259-192-2:365

Schams D and Berisha B. 2004. Regulation of corpus luteum function in cattle – an overview. Reproduction in Domestic Animals 39: 241–51. DOI: https://doi.org/10.1111/j.1439-0531.2004.00509.x

Slonia D, Kowalik M K, Subocz M and Kotwica J. 2009. The effect of ovarian steroids on oxytocin-stimulated secretion and synthesis of prostaglandins in bovine myometrial cells. Prostaglandins and Other Lipid Mediators 90: 69–75. DOI: https://doi.org/10.1016/j.prostaglandins.2009.08.006

Smith W L and Dewitt D L. 1996. Prostaglandin endoperoxide H synthases-1 and -2. Advances in Immunology 62: 167–215. DOI: https://doi.org/10.1016/S0065-2776(08)60430-7

Svec D, Tichopad A, Novosadova V, Pfaffl M W and Kubista M. 2015. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomolecular Detection and Quantification 3: 9–16. DOI: https://doi.org/10.1016/j.bdq.2015.01.005

Tan G J S, Tweedale R and Biggs J S G. 1982. Effects of oxytocin on the bovine corpus luteum of early pregnancy. Journal of Reproduction and Fertility 66: 75–78. DOI: https://doi.org/10.1530/jrf.0.0660075

Townson D H and Pate J L. 1994. Regulation of prostaglandin synthesis by interleukin-1b in cultured bovine luteal cells. Biology of Reproduction 51: 480–85. DOI: https://doi.org/10.1095/biolreprod51.3.480

Townson D H and Pate J L. 1996. Mechanism of action of TNF- α stimulated prostaglandin production in cultured bovine luteal cells. Prostaglandins 52: 361–73. DOI: https://doi.org/10.1016/S0090-6980(96)00104-9

Vale W G, Ohasi O M, Sousa J S, Ribeiro H F L, Silva A O A and Nanba S Y. 1989. Morte embrionaria e fatal em bufalos, Bubalus bubalus. Revista Brasileira de Reproducao Animal 13: 157–65.

Waclawik A, Blitek A and Ziecik A J. 2010. Oxytocin and tumor necrosis factor α stimulate expression of prostaglandin E2 synthase and secretion of prostaglandin E2 by luminal epithelial cells of the porcine endometrium during early pregnancy. Reproduction 140: 613–22. DOI: https://doi.org/10.1530/REP-10-0092

Wathes D C, Matthews E L and Ayad V J. 1992. Effect of oxytocin infusion on secretion of progesterone and luteinizing hormone and the concentration of uterine oxytocin receptors during the periovulatory period in cloprostenol-treated ewes. Journal of Reproduction and Fertility 96: 657–65. DOI: https://doi.org/10.1530/jrf.0.0960657

Yildiz A and Erisir Z. 2006. Effects of exogenous oxytocin on embryonic survival in cows. Acta Veterinaria Brno 75: 73– 78. DOI: https://doi.org/10.2754/avb200675010073

Downloads

Submitted

2018-10-18

Published

2018-10-22

Issue

Section

Articles

How to Cite

TRIPATHI, M. K., MONDAL, S., MOR, A., & REDDY, I. J. (2018). Effect of oxytocin on in vitro prostaglandin production and expression of PGFS and PGES mRNAs in buffalo corpus luteum. The Indian Journal of Animal Sciences, 88(10), 1146-1151. https://doi.org/10.56093/ijans.v88i10.84082
Citation