Genome-wide association analysis to identify QTL for carcass traits in Hanwoo (Korean native cattle)
234 / 179
Keywords:
Gangwon, Genome-wide association study (GWAS), Hanwoo, SNP markersAbstract
A genome-wide association study (GWAS) was performed to investigate the genetic markers associated with carcass traits of Hanwoo (Bos taurus coreanae) steer in the Gangwon region of Korea. Hanwoo steer (139) from the Gangwon region were genotyped with Bovine SNP50K BeadChip, and 35,769 SNPs were analyzed for five specific carcass traits after applying several filters. A total of seven quantitative trait loci were detected, of which four, one, and 2 SNPs were detected on various B. taurus autosomal chromosomes (BTA) by the respective model. The four significant SNPs associated with backfat thickness were ARS-BFGL-NGS–41475 on BTA 5, ARS-BFGLNGS- 36359 on BTA 19, ARS-BFGL-NGS-56813 on BTA 22, and Hapmap25048-BTA-138242 on BTA 25. Among the detected SNPs, one and two SNPs were associated with marbling score (ARS-BFGL-NGS-110066 on BTA 23) and meat colour (BTB-01920239 on BTA 15 and ARS-BFGL-NGS-24934 on BTA 18). In this GWAS, we identified three positional candidate genes for carcass traits, backfat thickness (Fibulin-2, FBLN2; Sorting nexin 29, SNX29) and meat colour (WW domain containing oxidoreductase, WWOX). Our results suggest that the candidate SNP markers do affect the genomic selection of associated carcass traits for Hanwoo in the Gangwon region.Downloads
References
Ashwell M S, Rexroad Jr. C E, Miller R H, VanRaden P M and Da Y. 1997. Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers. Animal Genetics 28(3): 216–22. DOI: https://doi.org/10.1111/j.1365-2052.1997.00115.x
Barendse W, Reverter A, Bunch R J, Harrison B E, Barris W and Thomas M B. 2007. A validated whole-genome association study of efficient food conservation in cattle. Genetics 176(3): 1893–1905. DOI: https://doi.org/10.1534/genetics.107.072637
Boichard D, Grohs C, Bourgeois F, Cerqueira F, Faugeras R, Neau A, Rupp R, Amigues Y, Boscher M Y and Levéziel H. 2003. Detection of genes influencing economic traits in three French dairy cattle breeds. Genetics Selection Evolution 35(1): 77– 101. DOI: https://doi.org/10.1186/1297-9686-35-1-77
Bolormaa S, Porto Neto L R, Zhang Y D, Bunch R J, Harrison B E, Goddard M E and Barendes W. 2011. A genome-wide association study of meat and carcass traits in Australian cattle. Journal of Animal Science 89(8): 2297–2309. DOI: https://doi.org/10.2527/jas.2010-3138
Cho B D and Ko Y D. 1998. Hanwoo meat. Domestic Animal Industry in Korea, pp 3–25. (Ed.) Jung J K. World Association of Animal Science in Korea.
Daetwyler H D, Schenkel F S, Sargolzaei M and Robinson J A B. 2008. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science 91(8): 3225–36. DOI: https://doi.org/10.3168/jds.2007-0333
Dang C G, Lee J J and Kim N S. 2011. Estimation of inbreeding coefficients and effective population size in breeding bulls of Hanwoo (Korean cattle). Journal of Animal Science and Technology 53(4): 297–302. DOI: https://doi.org/10.5187/JAST.2011.53.4.297
Davis G P and DeNise S K. 1998. The impact of genetic markers on selection. Journal of Animal Science 76(9): 2331–39. DOI: https://doi.org/10.2527/1998.7692331x
Fernandes Jr. G A, Costa R B, de Camargo G M F, Carvalheiro R, Rosa G J M, Baldi F, Garcia D A, Gordo D G M, Espigolan R, Takada L, Magalhães A F B, Bresolin T, Feitosa F L B, chardulo L A L, de Oliveira H N and de Albuquerque L G. 2016. Genome scan for postmortem carcass traits in Nellore cattle. Journal of Animal Science 94(10): 4087–95. DOI: https://doi.org/10.2527/jas.2016-0632
Flury C, Boschung C, Denzler M, Bapst B, Schnyder U and Gredler B. 2014. Genome-wide association study for 13 udder traits from linear type classification in cattle. Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. pp. 17–22. Vancouver, BC, Canada.
Fox C S, Liu Y, White C C, Feitosa M, Smith A V, Heard-Costa N, Lohman K, GIANT Consortium, MAGIC Consortium, GLGC Consortium, Johnson A D, Foster M C, Greenwalt D M, Griffin P, Ding J, Newman A B, Tylavsky F, Miljkovic I, Kritchevsky S B, Launer L, Garcia M, Eiriksdottir G, Jeffery Carr J, Gudnason V, Harris T B, Adrienne Cupples L and Borecki I B. 2012. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genetics 8(5): e1002695. DOI: https://doi.org/10.1371/journal.pgen.1002695
Goddard M E and Hayes B J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10(6): 381–91. DOI: https://doi.org/10.1038/nrg2575
Hong M W, Choi S Y, Kim H, Yang S Y, Kwak K, Kim J B and Lee S J. 2017. Linkage disequilibrium and association analysis of Hanwoo steer in Gangwon region using Bovine SNP50K BeadChip. Annals of Animal Resource Sciences 28(2): 46–55. DOI: https://doi.org/10.12718/AARS.2017.28.2.46
Hulett D L, Hayes B, Chamberlain A J, Krishnan L, McPartlan H, Herd R M and Goddard M. 2007. Cross validation of QTL from linkage analysis and linkage disequilibrium analysis. Association for the Advancement of Animal Breeding Genetics 17: 384–86.
Karim L, Takeda H, Lin L, Druet T, Arias J A C, Baurain D, Cambisano N, Davis S R, Farnir F, Grisart B, Harris B L, Keehan M D, Littlejohn M D, Spelman R J, Georges M and Coppieters W. 2011. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nature Genetics 43(5): 405–13. DOI: https://doi.org/10.1038/ng.814
Kim Y, Ryu J, Woo J, Kim J B, Kim C Y and Lee C. 2011. Genome- wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Animal Genetics 42(4): 361–65. DOI: https://doi.org/10.1111/j.1365-2052.2010.02156.x
Kneeland J, Li C, Basarab J, Snelling W M, Benkel B, Murdoch B, Hansen C and Moore S S. 2004. Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21 and 23 within one commercial line of Bos taurus. Journal of Animal Science 82(12): 3405–14. DOI: https://doi.org/10.2527/2004.82123405x
Kolbehdari D, Wang Z, Grant J R, Murdoch B, Prasad A, Xiu Z, Stothard P and Moore S S. 2008. A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. Journal of Animal Breeding and Genetics 126(3): 216–27. DOI: https://doi.org/10.1111/j.1439-0388.2008.00793.x
KAPE (Korea Institute for Animal Products Quality Evaluation). 2013. Available: http://www.ekapepia.com/user/distribution/ distDetail.do;jsessionid=A19333D75C35A67D004212A6F3D5E5AB?nd1906 Koshkoih A E, Pitchford W S, Bottema D K, Verbyla A P and Gilmour A R. 2006. Mapping multiple QTL for birth weight using a mixed model approach. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. pp.
–18. Belo Horizonte, MG, Brazil.
Kwon A, Srikanth K, Lee E, Kim S and Chung H. 2016. Confirmation of genotypic effects for the bovine APM1 gene on marbling in Hanwoo cattle. Journal of Animal Science and Technology 58(1): 15. DOI: https://doi.org/10.1186/s40781-016-0096-2
Lee J H, Li Y and Kim J J. 2012a. Detection of QTL for carcass quality on chromosome 6 by exploiting linkage and linkage disequilibrium in Hanwoo. Asian Australasian Journal of Animal Sciences 25(1): 17. DOI: https://doi.org/10.5713/ajas.2011.11337
Lee K T, Chung W H, Lee S Y, Choi J W, Kim J, Lim D, Lee S, Jang G W, Kim B, Choy Y H, Liao X, Stothard P, Moore S S, Lee S H, Ahn S, Kim N and Kim T H. 2013a. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics 14(1): 519. DOI: https://doi.org/10.1186/1471-2164-14-519
Lee S H, Choi B H, Lim D, Gondro C, Cho Y M, Dang C G, Sharma A, Jang G W, Lee K T, Yoon D, Lee H K, Yeon S H, Yang B S, Kang H S and Hong S K. 2013b. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean Cattle). PLoS One 8(10): e74677. DOI: https://doi.org/10.1371/journal.pone.0074677
Lee S H, Lim D, Jang G W, Cho Y M, Choi B H, Kim S D, Oh S J, Lee J H, Yoon D, Park E W, Lee H K, Hong S K and Yang B S. 2012b. Genome wide association study to identity QTL for growth traits in Hanwoo. Journal of Animal Science and Technology 54(5): 323–29. DOI: https://doi.org/10.5187/JAST.2012.54.5.323
Lee S H, Park B H, Sharma A, Dang C G, Lee S S, Choi T J, Choy Y H, Kim H C, Jeon K J, Kim S D, Yeon S H, Park S B and Kang H S. 2014. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. Journal of Animal Science and Technology 56(1): 2. DOI: https://doi.org/10.1186/2055-0391-56-2
Li Y, Gao Y, Kim Y S, Iqbal A and Kim J J. 2017. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo. Asian Australasian Journal of Animal Sciences 30(1): 8. DOI: https://doi.org/10.5713/ajas.16.0170
Li Y and Kim J J. 2015. Multiple linkage disequilibrium mapping methods to validate additive quantitative trait loci in Korean native cattle (Hanwoo). Asian Australasian Journal of Animal Sciences 28(7): 926. DOI: https://doi.org/10.5713/ajas.15.0077
Li Y, Lee J H, Lee Y M and Kim J J. 2011. Application of linkage disequilibrium mapping methods to detect QTL for carcass quality on chromosome 6 using a high density SNP map in Hanwoo. Asian Australasian Journal of Animal Sciences 24(4): 457–62. DOI: https://doi.org/10.5713/ajas.2011.11019
Maltecca C, Weigel K A, Khatib H, Cowan M and Bagnato A. 2009. Whole-genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein × Jersey crossbred population. Animal Genetics 40(1): 27–34. DOI: https://doi.org/10.1111/j.1365-2052.2008.01793.x
Marques E, Nkrumah J D, Sherman E L and Moore S S. 2009. Polymorphisms in positional candidate genes on BTA14 and BTA26 affect carcass quality in beef cattle. Journal of Animal Science 87(8): 2475–84. DOI: https://doi.org/10.2527/jas.2008-1456
McClure M C, Morsci N S, Schnabel R D, Kim J W, Yao P, Rolf M M, McKay S D, Gregg S J, Chapple R H, Northcutt S L and Taylor J F. 2010. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Animal Genetics 41(6): 597–607. DOI: https://doi.org/10.1111/j.1365-2052.2010.02063.x
Na K J, Lee K S, Kim H S and Kim K S. 1985. Studies on developing new breed (composite) crossed with Korean native cattle and Charolais. 1. Comparison of the growth rate and reproductive traits between Korean native cattle and Charolais crossbreed on the farm performance. Journal of Animal Science and Technology 27(4): 193–96.
Nishimaki T, Ibi T, Tanabe Y, Miyazaki Y, Kobayashi N, Matsuhashi T, Akiyama T, Yoshida E, Imai K, Matsui M, Uemura K, Watanabe N, Fujita T, Saito Y, Komatsu T, Yamada T, Mannen H, Sasazaki S and Kunieda T. 2013. The assessment of genetic diversity within and among the eight subpopulations of Japanese Black cattle using 52 microsatellite markers. Animal Science Journal 84(8): 585–91. DOI: https://doi.org/10.1111/asj.12045
Oh J D, Jeon G J, Lee H K, Cho B W, Lee M R and Kong H S. 2008. Genetic relationship between populations and analysis
of genetic structure in Hanwoo proven and regional area populations. Journal of Life Science 18(10): 1442–46.
Park H R, Eum S H, Park J H, Seo J, Cho S K, Shin T S, Cho B W, Park H C, Lee E J, Sun D W, Lim H T, Lee J G and Kim B W. 2015. Contribution analysis of carcass traits on auction price in Gyeongsangnam-do Hanwoo. Journal of Agriculture and Life Science 49(6): 187–95. DOI: https://doi.org/10.14397/jals.2015.49.6.187
Park S R, Hong M W, Kim H, Lee S K, Lee Y S, Kim J W, Song Y H, Kim K B, Oh J D, Lee H K, Choi J W and Lee S J. 2012. Association between a SNP of Stearoyl-CoA Desaturase-1 (SCD1) gene and economic traits using PCR-RFLP in Hanwoo. Annals of Animal Resource Sciences 23(1): 1–7.
Peters S O, Kizilkaya K, Garrick D J, Fernando R L, Reecy J M, Weaber R L, Silver G A and Thomas M G. 2012. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. Journal of Animal Science 90(10): 3398–3409. DOI: https://doi.org/10.2527/jas.2011-4507
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J and Sham P C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81(3): 559–75. DOI: https://doi.org/10.1086/519795
Raghunath M, Tschödrich-Rotter M, Sasaki T, Meuli M, Chu M L and Timpl R. 1999. Confocal laser scanning analysis of the association of fibulin-2 with fibrillin-1 and fibronectin define different stages of skin regeneration. Journal of Investigative Dermatology 112(1): 97–101. DOI: https://doi.org/10.1046/j.1523-1747.1999.00483.x
Rhee M S, Ryu Y C and Kim B C. 2002. Comparative studies on metabolic rate and calpain/calpastatin activity between Hanwoo and Holstein beef. Asian Australasian Journal of Animal Sciences 15(12): 1747–53. DOI: https://doi.org/10.5713/ajas.2002.1747
Snelling W M, Allan M F, Keele J W, Kuehn L A, McDaneld T, Smith T P L, Sonstegard T S, Thallman R M and Bennett G L. 2010. Genome-wide association study of growth in crossbred beef cattle. Journal of Animal Science 88(3): 837–48. DOI: https://doi.org/10.2527/jas.2009-2257
Sun D W, Kim B W, Moon W G, Park J C, Park C H, Koo Y M, Jeoung Y H, Lee J Y, Jang H G, Jeon J T and Lee J G. 2010. The estimation of environmental effect and genetic parameters on carcass traits in Hanwoo. Journal of Agriculture and Life Science 44(6): 83–89.
Sung Y J, Pérusse L, Sarzynski M A, Fornage M, Sidney S, Sternfeld B, Rice T, Terry J G, Jacobs Jr D R, Katzmarzyk P, Curran J E, Jeffery Carr J, Blangero J, Ghosh S, Després J P, Rankinen T, Rao D C and Bouchard C. 2016. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. International Journal of Obesity 40(4): 662–74. DOI: https://doi.org/10.1038/ijo.2015.217
Tanaka H, Ohtsu A, Shiratsuki S, Kawahara-Miki R, Iwata H, Kuwayama T and Shirasuna K. 2016. Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. Molecular Reproduction and Development 83(9): 815–26. DOI: https://doi.org/10.1002/mrd.22693
VanRaden P M, Van Tassell C P, Wiggans G R, Sonstegard T S, Schnabel R D, Taylor J F and Schenkel F S. 2009. Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science 92(1): 16–24. DOI: https://doi.org/10.3168/jds.2008-1514
Venkata Reddy B, Sivakumar A S, Jeong D W, Woo Y B, Park S J, Lee S Y, Byun J Y, Kim C H, Cho S H and Hwang I. 2015. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments. Animal Science Journal 86(1): 1–16. DOI: https://doi.org/10.1111/asj.12266
Yang J, Lee S H, Goddard M E and Visscher P M. 2011. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics 88(1): 76–82. DOI: https://doi.org/10.1016/j.ajhg.2010.11.011
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2019 The Indian Journal of Animal Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles published in The Indian Journal of Animal Sciences is vested with the Indian Council of Agricultural Research, which reserves the right to enter into any agreement with any organization in India or abroad, for reprography, photocopying, storage and dissemination of information. The Council has no objection to using the material, provided the information is not being utilized for commercial purposes and wherever the information is being used, proper credit is given to ICAR.