Promoter DNA methylation and expression analysis of PIWIL1 gene in purebred and crossbred cattle bulls


Abstract views: 140 / PDF downloads: 116

Authors

  • SONIKA AHLAWAT Scientist, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • NEHA SAROVA MTech Scholar, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • REKHA SHARMA Principal Scientist, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • REENA ARORA Principal Scientist, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India
  • M S TANTIA Principal Scientist, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132 001 India

https://doi.org/10.56093/ijans.v89i7.92014

Keywords:

Cattle, Crossbreeding, Expression, Fertility, Methylation, PIWIL1

Abstract

Major credit for India being the largest producer of milk in the world, goes to crossbred cows produced by inseminating low-producing indigenous cattle with semen from high producing exotic bulls. However, over the years, the policy of crossbreeding has been confronted with a major problem of subfertility in crossbred male progenies, culminating into disposal of a major fraction of mature bulls. Many studies have demonstrated relationship between epigenetic alterations and male fertility across different species. PIWIL1 is an important candidate gene for spermatogenesis and germ line development. Negative correlation between DNA methylation and expression of this gene has been highlighted in inter species hybrids of cattle and yaks. The present study envisaged elucidating promoter methylation status and expression profile of PIWIL1 gene in exotic Holstein Friesian cattle, indigenous Sahiwal cattle and their crossbreds with varying semen motility parameters. Semen samples were collected from bulls for isolation of DNA and RNA from spermatozoa. Bisulfite converted DNA was used to amplify promoter of PIWIL1 gene using methylation specific primers. The amplified products were sequenced after cloning in pTZ57R/ T vector. The degree of methylation of the PIWIL1 promoter region was significantly higher in poor motility crossbred bulls (7.17%) as compared to good motility crossbreds (1.02%), Sahiwal (1.02%) and Holstein Friesian bulls (0.77%). PIWIL1 expression was 1.75, 1.71 and 1.59 folds higher in HF, Sahiwal and good motility crossbreds, respectively as compared to poor motility crossbreds.

Downloads

Download data is not yet available.

References

Ahlawat S, De S, Sharma P, Sharma R, Arora R, Kataria R S and Singh R K. 2017. Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids. Molecular Genetics and Genomics 292(1): 117–31. DOI: https://doi.org/10.1007/s00438-016-1260-6

Ahlawat S, Sharma R, Arora R, Kumari N, Mishra A K and Tantia M S. 2018. Promoter methylation and expression analysis of Bvh gene in bulls with varying semen motility parameters. Theriogenology 125: 152–56. DOI: https://doi.org/10.1016/j.theriogenology.2018.11.001

Aravin A A, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth K F, Bestor T and Hannon G J. 2008. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular Cell 31: 785–99. DOI: https://doi.org/10.1016/j.molcel.2008.09.003

Bak C W, Yoon T K and Choi Y. 2011. Functions of PIWI proteins in spermatogenesis. Clinical and Experimental Reproductive Medicine 38(2): 61–67. DOI: https://doi.org/10.5653/cerm.2011.38.2.61

Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T and Weber M. 2010. Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genetics 42(12): 1093–101. DOI: https://doi.org/10.1038/ng.708

De Carvalho D D, You J S and Jones P A. 2010. DNA methylation and cellular reprogramming. Trends in Cell Biology 20: 609– 17. DOI: https://doi.org/10.1016/j.tcb.2010.08.003

Ferreira H J, Heyn H, Garcia del Muro X, Vidal A, Larriba S, Muñoz C, Villanueva A and Esteller M. 2014. Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics 9(1): 113–18. DOI: https://doi.org/10.4161/epi.27237

Friemel C, Ammerpohl O, Gutwein J, Schmutzler A G, Caliebe A, Kautza M, von Otte S, Siebert R and Bens S. 2014. Array- based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2. Fertility and Sterility 101(4): 1097–1103. DOI: https://doi.org/10.1016/j.fertnstert.2013.12.054

Galukande E, Mulindwa H, Wurzinger M, Roschinsky R, Mwai A O and Sölkner J. 2013. Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities. Animal Genetic Resources 52: 111–25. DOI: https://doi.org/10.1017/S2078633612000471

Giebler M, Greither T, Müller L, Mösinger C and Behre H M. 2017. Altered PIWI LIKE 1 and PIWI LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics. Asian Journal of Andrology 19: 1–5.

Girard A, Sachidanandam R, Hannon G J and Carmell M A. 2006. A germline specific class of small RNAs binds mammalian Piwi proteins. Nature 442: 199–202. DOI: https://doi.org/10.1038/nature04917

Gou L T, Dai P, Yang G H, Xue Y, Hu Y P, Zhou Y, Kang J Y, Wang X, Li H, Hua M M, Zhao S, Hu S D, Wu L G, Shi H J, Li Y, Fu X D, Qu L H, Wang E D and Liu M F. 2014. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Research 24: 680–700. DOI: https://doi.org/10.1038/cr.2014.41

Gou L T, Kang J Y, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua M M, Lu Y, Zhu Y, Li Z, Chen H, Wu L G, Li D, Fu X D, Li J, Shi H J and Liu M F. 2017. Ubiquitination deficient mutations in human Piwi cause male infertility by impairing histone to protamine exchange during spermiogenesis. Cell 169: 1090– 104. DOI: https://doi.org/10.1016/j.cell.2017.04.034

Gu A, Ji G, Shi X, Long Y, Xia Y, Song L, Wang S and Wang X. 2010. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Human Reproduction 25(12): 2955–61. DOI: https://doi.org/10.1093/humrep/deq274

Gu Y, Li Q, Pan Z, Li M, Luo H and Xie Z. 2013. Molecular cloning, gene expression and methylation status analysis of PIWIL1 in cattle-yaks and the parental generation. Animal Reproduction Science 140: 131–37. DOI: https://doi.org/10.1016/j.anireprosci.2013.05.010

Heyn H, Ferreira H J, Bassas L, Bonache S, Sayols S, Sandoval J, Esteller M and Larriba S. 2012. Epigenetic disruption of the PIWI pathway in human spermatogenic disorders. PLoS ONE 7(10): e47892. DOI: https://doi.org/10.1371/journal.pone.0047892

Jena S C, Kumar S, Rajput S, Roy B, Verma A, Kumaresan A, Mohanty T K, De S, Kumar R and Datta T K. 2014. Differential methylation status of IGF2-H19 locus does not affect the fertility of crossbred bulls but some of the CTCF binding sites could be potentially important. Molecular Reproduction and Development 81: 350–62. DOI: https://doi.org/10.1002/mrd.22303

Kapila N, Kishore A, Sodhi M, Sharma A, Kumar P, Mohanty A K, Jerath T and Mukesh M. 2013. Identification of appropriate reference genes for qRT-PCR analysis of heat-stressed mammary epithelial cells in riverine buffaloes (Bubalus bubalis). ISRN Biotechnology. http://dx.doi.org/10.5402/2013/735053. DOI: https://doi.org/10.5402/2013/735053

Khatun M, Kaur S, Kanchan and Mukhopadhyay C S. 2013. Subfertility problems leading to disposal of breeding bulls. Asian Australasian Journal of Animal Science 26: 303–08. DOI: https://doi.org/10.5713/ajas.2012.12413

Koroma A P, Jones R and Michalak P. 2011. Snapshot of DNA methylation changes associated with hybridization in Xenopus. Physiological Genomics 43: 1276–80. DOI: https://doi.org/10.1152/physiolgenomics.00110.2011

Laqqan M, Solomayer E F and Hammadeh M. 2017. Aberrations in sperm DNA methylation patterns are associated with abnormalities in semen parameters of sub-fertile males. Reproductive Biology 17: 246–51. DOI: https://doi.org/10.1016/j.repbio.2017.05.010

Lau N C, Seto A G, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel D P and Kingston R E. 2006. Characterization of the piRNA complex from rat testes. Science 313: 363–67. DOI: https://doi.org/10.1126/science.1130164

Leushuis E, van der Steeg J W, Steures P, Repping S, Bossuyt P M, Blankenstein M A, Mol B W, van der Veen F and Hompes P G. 2010. Reproducibility and reliability of repeated semen analyses in male partners of sub-fertile couples. Fertility and Sterility 94: 2631–35. DOI: https://doi.org/10.1016/j.fertnstert.2010.03.021

Liu Z, Li Q, Pan Z, Qu X, Zhang C and Xie Z. 2011. Comparative analysis on mRNA expression level and methylation status of DAZL gene between cattle-yaks and their parents. Animal Reproduction Science 126: 258–64. DOI: https://doi.org/10.1016/j.anireprosci.2011.05.013

Livak K J and Schmittgen T D. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2-Ct method. Methods 25: 402–08. DOI: https://doi.org/10.1006/meth.2001.1262

Pereira N, Cozzubbo T, Neri Q V, Lekovich J P, Palermo J D and Rosenwaks Z. 2016. Identifying the epigenetic basis of idiopathic infertility using next-generation sequencing of spermatozoal RNAs. Fertility and Sterility 105(2): e33–e34. DOI: https://doi.org/10.1016/j.fertnstert.2015.12.092

Qiu L, Xu L, Chang G, Guo Q, Liu X, Bi Y, Zhang Y, Wang H, Wang K, Lu W, Ren L, Zhu P, Wu Y, Zhang Y, Xu Q and Chen G. 2016. DNA methylation-mediated transcription factors regulate PIWIL1 expression during chicken spermatogenesis. Journal of Reproduction and Development 62(4): 367–72. DOI: https://doi.org/10.1262/jrd.2016-003

Russell S J, Stalker L, Gilchrist G, Backx A, Molledo G, Foster R A and LaMarre J. 2016. Identification of PIWIL1 isoforms and their expression in bovine testes, oocytes, and early embryos. Biology of Reproduction 94(4): 75. DOI: https://doi.org/10.1095/biolreprod.115.136721

Sambrook J, Fritsch E F and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual (2nd edition). Cold Spring Habor Laboratory Press.

Sarova N, Ahlawat S, Grewal A, Sharma R and Arora R. 2018. Differential promoter methylation of DAZL gene in bulls with varying seminal parameters. Reproduction in Domestic Animals 53(4): 914–20. DOI: https://doi.org/10.1111/rda.13187

Urdinguio R G, Bayón G F, Dmitrijeva M, Toraño E G, Bravo C, Fraga M F, Bassas L, Larriba S and Fernandez A F. 2015. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Human Reproduction 30: 1014– 28. DOI: https://doi.org/10.1093/humrep/dev053

Vagin V V, Sigova A, Li C, Seitz H, Gvozdev V and Zamore P D A. 2006. Distinct small RNA pathway silences selfish genetic elements in the germline. Science 313: 320–24. DOI: https://doi.org/10.1126/science.1129333

Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z and Li Q. 2015. Epigenetic regulation of bovine spermatogenic cell-specific gene Boule. PLoS ONE 10(6): e0128–250. DOI: https://doi.org/10.1371/journal.pone.0128250

Downloads

Submitted

2019-07-26

Published

2019-07-26

Issue

Section

Articles

How to Cite

AHLAWAT, S., SAROVA, N., SHARMA, R., ARORA, R., & TANTIA, M. S. (2019). Promoter DNA methylation and expression analysis of PIWIL1 gene in purebred and crossbred cattle bulls. The Indian Journal of Animal Sciences, 89(7), 722–727. https://doi.org/10.56093/ijans.v89i7.92014
Citation