Molecular detection of benzimidazole resistance in Haemonchus contortus of sheep in Punjab
337 / 246
Keywords:
Anthelmintic resistance, AS-PCR, Benzimidazole, Haemonchus contortus, Punjab, SheepAbstract
Single nucleotide polymorphism (SNP) at codon 167, 198 and 200 of β-tubulin isotype 1 gene accounts for benzimidazole resistance in Haemonchus contortus. To assess the anthelmintic resistance to benzimidazole group, allele specific polymerase chain reaction (AS-PCR) was employed on 50 adults of local abattoir of Ludhiana and 138 harvested larvae of H. contortus from faecal samples collected from field flocks of 6 districts of western zone of Punjab. The adults were found to be homozygous resistant (rr) showing 100% prevalence of resistant allele (r). AS-PCR on 138 larvae collected from different districts of Punjab showed 49.28% (69) homozygous resistant (rr), 3.62% (5) homozygous susceptible (SS) and 46.37% (64) heterozygous (rS) population. Species was confirmed as H. contortus by PCR-RFLP from the three fragments of size 462 bp, 211 bp and 147 bp. The pioneer study on the molecular diagnosis of benzimidazole resistance in H. contortus showed an overall allele frequency for resistant and susceptible population to be 0.72 (TTC) and 0.28 (TAC), espectively indicating development of high level of resistance in sheep.Downloads
References
Alvarez-Sanchez J, Perez-Garcia, Cruz-Rojo M A and Pojo- Vazquez F A. 2005. Real time PCR for the diagnosis of benzimidazole resistance in trichostrongylids of sheep. Veterinary Parasitology 129: 291–98. DOI: https://doi.org/10.1016/j.vetpar.2005.02.004
Barrere V, Falzon L C, Shakya K P, Menzies P I, Peregrine A S and Prichard R K. 2013. Assessment of benzimidazole resistance in Haemonchus contortus in sheep flocks in Ontario, Canada: Comparison of detection methods for drug resistance. Veterinary Parasitology 198: 159–65. DOI: https://doi.org/10.1016/j.vetpar.2013.07.040
Beech R N, Prichard R K and Scott M E. 1994. Genetic variability of the beta-tubulin genes in benzimidizole susceptible and resistant strains of Haemonchus contortus. Genetics 138: 103– 10. DOI: https://doi.org/10.1093/genetics/138.1.103
Chandra S, Prasad A, Yadav N, Latchumikanthan A, Rakesh R L, Praveen K, Kobra V, Subraman K V, Misri J and Sankar M. 2015. Status of benzimidazole resistance in Haemonchus contortus of goats from different geographic regions of Uttar Pradesh, India. Veterinary Parasitology 208: 263–67. DOI: https://doi.org/10.1016/j.vetpar.2015.01.005
Chaudhry U, Redman E M, Raman M and Gilleard J S. 2015. Genetic evidence for the spread of a benzimidazole resistance mutation across southern India from a single origin in the parasitic nematode Haemonchus contortus. International Journal of Parasitology 45(11): 721–28. DOI: https://doi.org/10.1016/j.ijpara.2015.04.007
Coles G C, Jackson F, Pomroy W E, Prichard R K, von Samson- Himmelstjerna G, Silvestre A and Vercruysse J. 2006. The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 136(3–4): 167–85. DOI: https://doi.org/10.1016/j.vetpar.2005.11.019
Demeler J, Gill J H, von Samson-Himmelstjerna G and Sangster N C. 2013. The in vitro assay profile of macrocyclic lactone resistance in three species of sheep trichostrongyloids. International Journal of Parasitology and Drugs and Drug Resistance 3: 109–18. DOI: https://doi.org/10.1016/j.ijpddr.2013.04.002
Dixit A K, Das G, Dixit P, Singh A P, Kumbhakar N K, Sankar M and Sharma R L. 2017. An assessment of benzimidazole resistance against caprine nematodes in Central India. Tropical Animal Health and Production 49(7): 1471–78. DOI: https://doi.org/10.1007/s11250-017-1349-x
Garg R and Yadav C L. 2009. Genotyping of benzimidazole susceptible and resistant alleles in different populations of Haemonchus contortus from Himalayan and sub-Himalayan regions of North-West India. Tropical Animal Health and Production 41: 1127–31. DOI: https://doi.org/10.1007/s11250-008-9292-5
Ghisi M, Kaminsky R and Maser P. 2007. Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Veterinary Parasitology 144: 313–20. DOI: https://doi.org/10.1016/j.vetpar.2006.10.003
Kotze A C and Prichard R K. 2016. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Advances in Parasitology 93: 397–28. DOI: https://doi.org/10.1016/bs.apar.2016.02.012
Maharishi A K, Swarankar C P, Singh D, Manohar G S and Ayub M. 2011. Status of anthelmintic resistance in gastrointestinal nematodes of sheep in Rajasthan. Indian Journal of Animal Sciences 81: 105–09.
McLeod R S. 2004. Economic impact of worm infections in small ruminants in South East Asia, India and Australia. (Eds.) Sani R A, Gray G D and Baker R L. Worm Control of Small Ruminants in Tropical Asia. ACIAR Monograph, Canberra: pp. 23–33.
Pape M, Posedi J, Failing K, Schnieder T and von Samson- Himmelstjerna G. 2003. Analysis of the beta-tubulin codon 200 genotype distribution in a benzimidazole susceptible and resistant cyathostome population. Parasitology 127: 53–59. DOI: https://doi.org/10.1017/S0031182003003317
Pierce B A. 2003. Genetics: A Conceptual Approach. W.H. Freeman and Company, New York, USA. pp. 671–72.
Prichard R K. 2001. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology 17: 445–53. DOI: https://doi.org/10.1016/S1471-4922(01)01983-3
Santos M C, Silva B F and Amarante A F T. 2012. Environmental factors influencing the transmission of Haemonchus contortus. Veterinary Parasitology 188: 277–84. DOI: https://doi.org/10.1016/j.vetpar.2012.03.056
Silvestre A and Humbert J F. 2000. A molecular tool for species identification and benzimidazole resistance diagnosis in larval communities of small ruminant parasites. Experimental Parasitology 95(4): 271–76. DOI: https://doi.org/10.1006/expr.2000.4542
Singh E, Kaur P, Singla L D and Bal M S. 2017. Prevalence of gastrointestinal parasitism in small ruminants in western zone of Punjab, India. Veterinary World 10(1): 61–66 DOI: https://doi.org/10.14202/vetworld.2017.61-66
Singh R, Bal M S, Singla L D and Kaur P. 2017. Detection of anthelmintic resistance in sheep and goat against fenbendazole by faecal egg count reduction test. Journal of Parasitic Diseases 41(2): 463–66. DOI: https://doi.org/10.1007/s12639-016-0828-8
Singla, L.D. 1995. A note on sub-clinical gastro-intestinal parasitism in sheep and goats in Ludhiana and Faridkot dis-tricts of Punjab. Indian Veterinary Medical Journal 19: 61–62.
Soulsby E J L. 1982. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th edition. The English Language Book Society, Bailliere, Tindall, London. pp. 763–77.
Stuchlikova L R, Matouskova Matouskova P, Vokral Vokral I, Lamka J, Szotakova B, Seckarova A and Skalova L. 2018. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance- related differences and the identification of new metabolites. International Journal of Parasitology Drugs and Drug Resistance 8(1): 50–58. DOI: https://doi.org/10.1016/j.ijpddr.2018.01.005
Tiwari J, Kumar S, Kolte A P, Swarnkar C P, Singh D and Pathak K M L. 2006. Detection of benzimidazole resistance in Haemonchus contortus using RFLP-PCR technique. Veterinary Parasitology 138: 301–07. DOI: https://doi.org/10.1016/j.vetpar.2006.02.003
Downloads
Submitted
Published
Issue
Section
License
Copyright (c) 2020 The Indian Journal of Animal Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles published in The Indian Journal of Animal Sciences is vested with the Indian Council of Agricultural Research, which reserves the right to enter into any agreement with any organization in India or abroad, for reprography, photocopying, storage and dissemination of information. The Council has no objection to using the material, provided the information is not being utilized for commercial purposes and wherever the information is being used, proper credit is given to ICAR.