Conceptual Framework for Groundwater Vulnerability Assessment Using Physical, Experimental and Machine Learning Based Approaches in Coastal Aquifers of India


438 / 109

Authors

  • PANKAJ KUMAR GUPTA Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
  • BASANT YADAV Dept. of Water Resources Development & Management, Indian Institute of Technology, Roorkee - 247 667 Uttarakhand, India

Keywords:

Machine Learning, Physical based models, Salt water intrusion

Abstract

The exploitation of coastal aquifers results in intrusion of seawater and optimal management of coastal aquifers focuses mainly on adopting good operational strategies to contain aquifer salinity within a mandated limit, while simultaneously meeting the demand for water supply/recharge. Management of saltwater intrusion in coastal aquifers is thus a critical issue of modern times. In this study, we present a theoretical framework for assessing the groundwater vulnerability in coastal aquifers of India using physical, experimental, and machine learning-based approaches. The developed framework suggests the use of 2D experiment for understanding the saltwater intrusion processes and fate and transport of contaminants like fluoride and arsenic. Further, the obtained parameters from the 2D experiments will be used to develop a numerical model using a physical-based simulator (SEAWAT). Lastly, the physical-based simulator will be replaced by a machine learning-based model and later will be coupled with optimization approaches to solve the groundwater management problem in coastal aquifers. The suggested framework will be useful in developing the strategies for minimization of saltwater intrusion or maximization of freshwater pumping in coastal zones.

Downloads

Download data is not yet available.

References

Abd-Elhamid, H. F. and Javadi, A. A. (2011). A cost-effective method to control seawater intrusion in coastal aquifers. Water Resources Management 25(11): 2755-2780.

Acharyya, S. K. and Shah, B. A. (2007). Arsenic-contaminated groundwater from parts of Damodar fan-delta and west of Bhagirathi River, West Bengal, India: influence of fluvial geomorphology and Quaternary morphostratigraphy. Environmental Geology 52(3): 489-501.

Acharyya, S. K., Lahiri, S., Raymahashay, B. C. and Bhowmik, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of quaternary stratigraphy and holocene sea-level fluctuation. Environmental Geology 39(10): 1127-1137.

Akbarnejad-Nesheli, S., Haddad, O. B. and Loáiciga, H. A. (2016). Optimal in situ bioremediation design of groundwater contaminated with dissolved petroleum hydrocarbons. Journal of Hazardous, Toxic and Radioactive Waste 20(2): 04015021.

Aller, L., Bennett, T., Lehr, J. H, Petty, R. J and Hackett, G. (1987). DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential using Hydrogeologic Settings. NWWA/EPA Series, EPA-600/2-87-035, Environmental Protection Agency, Washington, D.C. U.S.

Anawar, H. M., Akai, J., MihaljeviÄ, M., Sikder, A. M., Ahmed, G., Tareq, S. M. and Rahman, M. M. (2011). Arsenic contamination in groundwater of Bangladesh: perspectives on geochemical, microbial and anthropogenic issues. Water 3(4): 1050-1076.

Ashtiani, A. B., Ketabchi, H. and Rajabi, M. M. (2013). Optimal management of a freshwater lens in a small island using surrogate models and evolutionary algorithms. Journal of Hydrologic Engineering 19(2): 339-354.

Banerjee, P., Singh, V. S., Chatttopadhyay, K., Chandra, P. C. and Singh, B. (2011). Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology 398(3): 212-220.

Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D. and Herrera, I. (1999). Seawater Intrusion in Coastal Aquifers - Concepts, Methods and Practices, Kluwer Academic, Dordrecht.

Bhattacharjya, R. K., and Datta, B. (2009). ANN-GA-based model for multiple objective management of coastal aquifers. Journal of Water Resources Planning and Management 135(5): 314-322.

Bhattacharjya, R. K., Datta, B. and Satish, M. G. (2007). Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers. Journal of Hydrologic Engineering 12(3): 273-282.

Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Etcheber, H., Abril, G. and Borges A. V. (2003). Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during preâ€monsoon: The local impact of extensive mangrove forests. Global Biogeochemical Cycles 17(4): 1114. doi:10.1029/2002GB002026.

Brindha, K. and Elango, L. (2013). PAHs contamination in groundwater from a part of metropolitan city, India: a study based on sampling over a 10-year period. Environmental Earth Sciences 71(12): 5113-5120.

Chakraborti, D., Rahman, M. M., Chatterjee, A., Das, D., Das, B., Nayak, B., Pal, A., Chowdhury, U. K., Ahmed, S., Biswas, B. K., Sengupta, M. K., Lodh, D., Samanta, G., Chakraborty, S., Roy, M. M., Dutta, R. N., Saha, K. C., Mukherjee, S. C., Pati, S. and Kar, P. B. (2016). Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches. Journal of Trace Elements in Medicine and Biology 38: 33-45.

Chakraborti, D., Sengupta, M. K., Rahman, M. M., Ahamed, S., Chowdhury, U. K., Hossain, A., Mukherjee, S. C., Pati, S., Saha, K. C., Dutta, R. N. and Quamruzzaman, Q. (2004). Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. Journal of Environmental Monitoring 6(6): 74-83.

Chatterjee, D., Halder, D., Majumder, S., Biswas, A., Nath, B., Bhattacharya, P., Bhowmick, S., Mukherjee-Goswami, A., Saha, D., Hazra, R. and Maity, P. B. (2010). Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Research 44(19): 5803-5812.

Chidambaram, S., Prasad, M. B. K., Manivannan, R., Karmegam, U., Singaraja, C., Anandhan, P., Prasanna, M. V. and Manikandan, S., (2013). Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district, Tamil Nadu (India). Environmental Earth Sciences 68(2): 333-342.

Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R., Samanta, G., Mandal, B. K., Basu, G. C., Chanda, C. R., Lodh, D., Saha, K. C., Mukherjee, S. K. and Roy, S. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives 108(5): 393-397.

Civita, M. and De Maio, M. (2004). Assessing and mapping groundwater vulnerability to contamination: the Italian combined approach. Geofísica Internacional 43(4): 513-532.

Dar, M. A., Sankar, K. and Dar, I. A. (2011). Fluorine contamination in groundwater: a major challenge. Environmental Monitoring and Assessment 173(1-4): 955-968.

Das, D., Samanta, G., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Chowdhury, P. P., Basu, G. K. and Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environmental Geochemistry and Health 18(1): 5-15.

Dhiman, S. D. and Keshari, A. K. (2006). Hydrogeochemical evaluation of high-fluoride groundwaters: a case study from Mehsana District, Gujarat, India. Hydrological Sciences Journal 51(6): 1149-1162.

Duttagupta, S., Mukherjee, A., Routh, J., Devi, L. G., Bhattacharya, A. and Bhattacharya, J. (2019). Role of aquifer media in determining the fate of polycyclic aromatic hydrocarbons in the natural water and sediments along the lower Ganges river basin. Journal of Environmental Science and Health, Part A, Toxic/hazardous Substances & Environmental Engineering 55(4): 354-373.

Ferreira, A. C. A. P. L. and Chachadi, A. G. (2005). Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: Part 2-GALDIT Indicators Description. Proceedings of the 4th Inter Celtic Colloquium on Hydrology and Management of Water Resources, July 11-13, 2005, Guimaraes, Portugal.

Foster, S. S, and Chilton, P. J (2003). Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society B. Biological Sciences 358: 1957-1972.

Gogu, R. C. and Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology 39(6): 549-559.

Guo, W. and Langevin, C. D. (2002). User’s guide to SEAWAT: A Computer Program for the Simulation of Three-Dimensional Variable-Density Ground-Water Flow. U.S. Geological Survey Techniques and Methods Book 6, Chapter A22, U.S. Geological Survey, Reston, Virginia, U.S. 39 p.

Gupta, G. V. M., Sarma, V. V. S. S., Robin, R. S., Raman, A. V., Kumar, M. J., Rakesh, M. and Subramanian, B. R. (2008). Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry 87(3): 265-285.

Gupta, G. V. M., Thottathil, S. D., Balachandran, K. K., Madhu, N. V., Madeswaran, P. and Nair, S. (2009). CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): influence of anthropogenic effect. Ecosystems 12(7): 1145-1157.

Gupta, P. K., Yadav, B., and Yadav, B. K. (2019). Assessment of LNAPL in subsurface under fluctuating groundwater table using 2D sand tank experiments. Journal of Environmental Engineering 145(9): 04019048.

Gupta, S. K., Deshpande, R. D., Agarwal, M. and Raval, B. R. (2005). Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeology Journal 13(4): 596-605.

Gupta, S., Banerjee, S., Saha, R., Datta, J. K. and Mondal, N. (2006). Fluoride geochemistry of groundwater in Nalhati-1 block of the Birbhum district, West Bengal, India. Fluoride 39(4): 318-320.

Himanshu, S. K., Pandey, A. and Yadav, B. (2017a). Assessing the applicability of TMPA-3B42V7 precipitation dataset in wavelet-support vector machine approach for suspended sediment load prediction. Journal of Hydrology 550: 103-117.

Himanshu, S. K., Pandey, A. and Yadav, B. (2017b). Ensemble wavelet-support vector machine approach for prediction of suspended sediment load using hydrometeorological data. Journal of Hydrologic Engineering 22(7): 05017006.

Huang, G. B., Zhu, Q. Y. and Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feed forward neural networks. Proceedings of the IEEE International Joint Conference on Neural Networks, Vol. 2, July 25-29, 2004, Budapest, Hungary. pp. 985-990.

Hussain, M. S., Javadi, A. A., Ahangar-Asr, A. and Farmani, R. (2015). A surrogate model for simulation-optimization of aquifer systems subjected to seawater intrusion. Journal of Hydrology 523: 542-554.

Joshi, P. and Gupta, P. K. (2018). Assessing groundwater resource vulnerability by coupling GIS-based DRASTIC and solute transport model in Ajmer District, Rajasthan. Journal of the Geological Society of India 92(1): 101-106.

Kumar, D., Prasad, R. K. and Mathur, S. (2013). Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization. Journal of Contaminant Hydrology 151: 105-116.

Kumar, P., Bansod, B. K., Debnath, S. K., Thakur, P. K. and Ghanshyam, C. (2015). Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environmental Impact Assessment Review 51: 38-49.

Kundu, N., Panigrahi, M. K., Tripathy, S., Munshi, S., Powell, M. and Hart, B. R. (2001) Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh district, Orissa, India. Environmental Geology 41: 451-460.

Kundu, M. C. and Mandal, B. (2009a). Agricultural activities influence nitrate and fluoride contamination in drinking groundwater of an intensively cultivated district in India. Water, Air, and Soil Pollution 198(1-4): 243-252.

Kundu, M. C. and Mandal, B. (2009b). Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Environmental Monitoring and Assessment 152(1-4): 97-103.

Loaiciga, H. A. (2009). Long-term climatic change and sustainable ground water resources management. Environmental Research Letters 4(3): doi:10.1088/1748-9326/4/3/035004

Machiwal, D., Jha, M. K., Singh, V. P. and Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews 185: 901-927.

Magesh, N. S., Krishnakumar, S., Chandrasekar, N. and Soundranayagam, J. P. (2013). Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arabian Journal of Geosciences 6(11): 4179-4189.

Mamatha, P. and Rao, S. M. (2010). Geochemistry of fluoride rich groundwater in Kolar and Tumkur Districts of Karnataka. Environmental Earth Sciences 61(1): 131-142.

Mategaonkar, M. and Eldho, T. I. (2012). Simulation-optimization model for in situ bioremediation of groundwater contamination using mesh-free PCM and PSO. Journal of Hazardous, Toxic and Radioactive Waste 16(3): 207-218.

Mitra, S., Corsolini, S., Pozo, K., Audy, O., Sarkar, S. K. and Biswas, J. K. (2019). Characterization, source identification and risk associated with polyaromatic and chlorinated organic contaminants (PAHs, PCBs, PCBzs and OCPs) in the surface sediments of Hooghly estuary, India. Chemosphere 221: 154-165.

Muduli, P. R., Kanuri, V. V., Robin, R. S., Kumar, B. C., Patra, S., Raman, A. V., Rao, G. N. and Subramanian, B. R. (2012). Spatio-temporal variation of CO2 emission from Chilika Lake, a tropical coastal lagoon, on the east coast of India. Estuarine, Coastal and Shelf Science 113: 305-313.

Noronha-D'Mello, C. A. and Nayak, G. N. (2016). Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India. Marine Pollution Bulletin 110(1): 221-230.

Pal, T., Mukherjee, P. K. and Sengupta S. (2002). Nature of arsenic pollutants in groundwater of Bengal basin - A case study from Baruipur area, West Bengal, India. Current Science 82(5): 554-561.

Panigrahi, S., Acharya, B. C., Panigrahy, R. C., Nayak, B. K., Banarjee, K. and Sarkar, S. K. (2007). Anthropogenic impact on water quality of Chilika lagoon RAMSAR site: a statistical approach. Wetlands Ecology and Management 15(2): 113-126.

Panigrahi, S., Wikner, J., Panigrahy, R. C., Satapathy, K. K. and Acharya, B. C. (2009). Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology 10(2): 73-85.

Raj, D. and Shaji, E. (2017). Fluoride contamination in groundwater resources of Alleppey, southern India. Geoscience Frontiers 8(1): 117-124.

Ram, S. S., Aich, A., Sengupta, P., Chakraborty, A. and Sudarshan, M. (2018). Assessment of trace metal contamination of wetland sediments from eastern and western coastal region of India dominated with mangrove forest. Chemosphere 211: 1113-1122.

Ramanaiah, S. V., Mohan, S. V., Rajkumar, B., and Sarma, P. N. (2006). Monitoring of fluoride concentration in ground water of Prakasham district in India: correlation with physico-chemical parameters. Journal of Environmental Science and Engineering 48(2): 129-134.

Rao, N. S. (2009). Fluoride in groundwater, Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment 152(1-4): 47-60.

Roy, D. K. and Datta, B. (2017). Fuzzy C-mean clustering based inference system for saltwater intrusion processes prediction in coastal aquifers. Water Resources Management 31: 355-367. doi.org/10.1007/s11269-016-1531-3.

Saha, D., Marwaha, S. and Dwivedi, S. N. (2019). National aquifer mapping and management programme: a step towards water security in India. In: Water Governance: Challenges and Prospects, A. Singh, D. Saha, and A. Tyagi (eds.), Springer, Singapore. pp 49-66.

Salve, P. R., Maurya, A., Kumbhare, P. S., Ramteke, D. S. and Wate, S. R. (2008). Assessment of groundwater quality with respect to fluoride. Bulletin of Environmental Contamination and Toxicology 81(3): 289. doi.org/10.1007/s00128-008-9466-x.

Sarma, V. V., Kumar, M. D. and Manerikar, M. (2001). Emission of carbon dioxide from a tropical estuarine system, Goa, India. Geophysical Research Letters 28(7): 1239-1242.

Shaffer, M. J., Wylie, B. K. and Hall, M. D. (1995). Identification and mitigation of nitrate leaching hot spots using NLEAP-GIS technology. Journal of Contaminant Hydrology 20(3-4): 253-263.

Shaji, E., Bindu, J. V. and Thambi, D. S. (2007). High fluoride in groundwater of Palghat District, Kerala. Current Science 92(2):240-245.

Shieh, H. J. and Peralta, R.C. (2005). Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing. Journal of Water Resources Planning and Management 131(1): 67–78.

Shirazi, S. M., Imran, H. M. and Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: a review. Journal of Risk Research 15(8): 991-1011.

Šimůnek, J. and van Genuchten, M. T. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal 7(2): 782-797.

Sreekanth, J. and Datta, B. (2010). Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology 393(3): 245-256.

Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, S., Chidambaram, S., Anandhan, P. and Manivannan, R. (2012). Assessment of groundwater quality with special emphasis on fluoride contamination in crystalline bed rock aquifers of Mettur region, Tamil Nadu, India. Arabian Journal of Geosciences 5(1): 83-94.

Subba Rao, N. (2003). Groundwater quality: focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India. Hydrological Sciences Journal 48(5): 835-847.

Sugita, F. and Nakane, K. (2007). Combined effects of rainfall patterns and porous media properties on nitrate leaching. Vadose Zone Journal 6(3): 548-553.

Taravatrooy, N., Nikoo, M. R., Adamowski, J. F. and Khoramshokooh, N. (2019). Fuzzy-based conflict resolution management of groundwater in-situ bioremediation under hydrogeological uncertainty. Journal of Hydrology 571: 376-389.

Tripathy, S., Panigrahi, M. K. and Kundu, N. (2005). Geochemistry of soil around a fluoride contaminated area in Nayagarh District, Orissa, India: factor analytical appraisal. Environmental Geochemistry and Health 27(3): 205-216.

van Genuchten, M.T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer-Verlag, New York, USA. 314 p.

Wachniew, P., Zurek, A. J., Stumpp, C., Gemitzi, A., Gargini, A., Filippini, M., Rozanski, K., Meeks, J., Kværner, J. and Witczak, S. (2016). Toward operational methods for the assessment of intrinsic groundwater vulnerability: a review. Critical Reviews in Environmental Science and Technology 46(9): 827-884.

Ward, A. K., Ward, G. M., Harlin, J. and Donahoe, R. (1992). Geological mediation of stream flow and sediment and solute loading to stream ecosystems due to climate change. In: Global Climate Change and Freshwater Ecosystems, P. Firth and S. G. Fisher (eds.), Springer, New York, NY. pp. 116-142.

Yadav, B. K. and Junaid, S. M. (2014). Groundwater vulnerability assessment to contamination using soil moisture flow and solute transport modeling. Journal of Irrigation and Drainage Engineering 141(7): 04014077.

Yadav, B. and Eliza, K. (2017). A hybrid wavelet-support vector machine model for prediction of Lake water level fluctuations using hydro-meteorological data. Measurement 103: 294-301.

Yadav, B., Ch, S., Mathur, S. and Adamowski, J. (2016). Estimation of in-situ bioremediation system cost using a hybrid extreme learning machine (ELM)-particle swarm optimization approach. Journal of Hydrology 543: 373-385.

Yadav, B., Gupta, P. K., Patidar, N. and Himanshu, S. K. (2019). Ensemble modelling framework for groundwater level prediction in urban areas of India. Science of the Total Environment 712: 135539.

Yadav, B., Mathur, S. and Yadav, B.K. (2018). Data-based modelling approach for variable density flow and solute transport simulation in a coastal aquifer. Hydrological Sciences Journal 63(2): 210-226.

Yang, A. L., Huang, G. H., Qin, X. S. and Fan, Y. R. (2012). Evaluation of remedial options for a benzene-contaminated site through a simulation-based fuzzy-MCDA approach. Journal of Hazardous Materials 213: 421-433.

Zanardi-Lamardo, E., Mitra, S., Vieira-Campos, A. A., Cabral, C. B., Yogui, G. T., Sarkar, S. K., Biswas, J. K. and Godhantaraman, N. (2019). Distribution and sources of organic contaminants in surface sediments of Hooghly river estuary and Sundarban mangrove, eastern coast of India. Marine Pollution Bulletin 146: 39-49.

Zheng, C. and Wang, P. P. (1999). MT3DMS: A Modular Three- Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide, Contract Report SERDP-99-1, Engineering Research and Development Center, U.S. Army Corps of Engineers Vicksburg, Mississippi, U.S. 169 p.

Downloads

Submitted

2019-12-24

Published

2020-12-04

Issue

Section

Articles

How to Cite

GUPTA, P. K., & YADAV, B. (2020). Conceptual Framework for Groundwater Vulnerability Assessment Using Physical, Experimental and Machine Learning Based Approaches in Coastal Aquifers of India. Journal of the Indian Society of Coastal Agricultural Research, 38(2), 51-67. https://epubs.icar.org.in/index.php/JISCAR/article/view/96380