Bacterial ghosts and their potential future applications-A mini review


Abstract views: 243 / PDF downloads: 17

Authors

  • I HUSSAIN Division of Veterinary Microbiology and Immunology, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shuhama, Srinagar, Jammu and Kashmir 190 006 India
  • S RAJKHOWA Senior Scientist, Animal Health Division, NRC on Pig, ICAR, Rani, Guwahati, Asom
  • D HASIN Division of Veterinary Physiology, Faculty of Veterinary Science and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shuhama, Srinagar, Jammu and Kashmir 190 006 India
  • S IQBAL Division of Veterinary Physiology, Faculty of Veterinary Science and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shuhama, Srinagar, Jammu and Kashmir 190 006 India

https://doi.org/10.56093/ijans.v85i12.54361

Keywords:

Adjuvant, Bacterial ghosts, Bio-adhesive, Carrier system, Multivalent vaccine, Safety, Tumor therapy

Abstract

Bacterial ghosts system represents an emerging novel platform for antigens, nucleic acids and drug delivery. Bacterial ghosts are non-living Gram-negative bacterial cell envelopes devoid of cytoplasmic contents while maintaining their structural and morphological properties of native bacterial cells including surface antigens and bio-adhesive properties. They are generally produced by PhiX174 protein E-mediated lysis of Gram-negative bacteria. The intrinsic adjuvant properties of bacterial ghost preparations enhance immune responses against envelope bound antigens, including T-cell activation and mucosal immunity. These particles have envisaged both medical and veterinary applications for vaccination and treatment of various infectious diseases and tumors. The advantages of bacterial ghosts include the simplicity of the production method, safety, independence from the cold chain, and their intrinsic cellular and tissue tropic abilities.

Downloads

Download data is not yet available.

References

Amara A A, Salem-Bekhit M M and Alanazi F K. 2013. Preparation of bacterial ghosts for E. coli JM109 using “Sponge-like reduced protocol”. Asian Journal of Biological Sciences 6: 363–69. DOI: https://doi.org/10.3923/ajbs.2013.363.369

Ebensen T, Paukner S, Link C, Kudela P, de Domenico C, Lubitz W and Guzma C A. 2004. Bacterial ghosts are an efficient delivery system for DNA vaccines. Journal of Immunology 172: 6858–65. DOI: https://doi.org/10.4049/jimmunol.172.11.6858

Eko F O, Mayr U B, Attridge S R and Lubitz W. 2000. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. Journal of Biotechnology 83: 115–23. DOI: https://doi.org/10.1016/S0168-1656(00)00315-1

Eko F W, Schukovskya T, Lotzmanova E Y, Firstova V V, Emalyanova N V, Klueva S N, Livanova L F, Kutyrev V V, Igietseme J U and Lubitz W. 2003a. Evaluation of the protective efficacy of vibrio choerae ghost (VCG) candidate vaccine in rabbits. Vaccine 21: 3663–74. DOI: https://doi.org/10.1016/S0264-410X(03)00388-8

Eko F O, Lubitz W, McMillan L, Ramey K, Moore T T, Ananaba G A, Lyn D, Black C M and Igietseme J U. 2003b.

Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21: 1694– 03. DOI: https://doi.org/10.1016/S0264-410X(02)00677-1

Haidinger W, Szostak M P, Beisker W and Lubitz W. 2001. Green fluorescent protein (GFP)-dependent separation of bacterial ghosts from intact cells by FACS. Cytometry 44: 106–12. DOI: https://doi.org/10.1002/1097-0320(20010601)44:2<106::AID-CYTO1088>3.0.CO;2-5

Haidinger W, Szostak M P, Jechlinger W and Lubitz W. 2003a. Online monitoring of Escherichia coli ghost production. Applied Environmental Microbiology 69: 468–74. DOI: https://doi.org/10.1128/AEM.69.1.468-474.2003

Haidinger W, Mayr U B, Szostak M P, Resch S and Lubitz W. 2003b. Escherichia coli ghost production by expression of lysis gene E and Staphylococcal nuclease. Applied Environmental Microbiology 69: 6106–13. DOI: https://doi.org/10.1128/AEM.69.10.6106-6113.2003

Haslberger A, Kohl G, Felnerova D, Mayr U B, Furst-Ladani S and Lubitz W. 2000. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. Journal of Biotechnology 83: 57–66. DOI: https://doi.org/10.1016/S0168-1656(00)00298-4

Hensel A, van Leengoed L A, Szostak M, Windt H, Weissenbock H, Stockhofe-Zurwieden N, Katinger A, Stadler M, Ganter M, Bunka S, Pabst R and Lubitz W. 1996. Induction of protective immunity by aerosol or oral application of candidate vaccines in a dose-controlled pig aerosol infection model. Journal of Biotechnology 44: 171–81. DOI: https://doi.org/10.1016/0168-1656(95)00150-6

Hensel A, Huter V, Katinger A, Raza P, Strnistschie C, Roessler U, Brand E and Lubitz W. 2000. Intramuscular immunization with genetically inactivated (ghosts). Actinobacillus pleuropneumoniae serotype 9 protects pigs against homologous aerosol challenge and prevents carrier state. Vaccine 18: 2945–55. DOI: https://doi.org/10.1016/S0264-410X(00)00107-9

Hobom G, Arnold N and Ruppert A. 1995. Omp A fusion proteins for presentation of foreign antigens on the bacterial outer membrane. Developments in Biological Standardization 84: 255–62.

Hoffelner H and Haas R. 2004. Recombinant bacterial ghosts versatile targeting vehicles and promising vaccine candidate. International Journal of Medical Microbiology 294: 303–11. DOI: https://doi.org/10.1016/j.ijmm.2004.04.003

Huter V, Szostak M P, Gampfer J, Prethaler S, Wanner G, Gabor F and Lubitz W. 1999. Bacterial ghosts as drug carrier and targeting vehicles. Journal of Controlled Release 61: 51–63. DOI: https://doi.org/10.1016/S0168-3659(99)00099-1

Huter V, Hensel A, Brand E. and Lubitz W. 2000. Improved pro-tection against lung colonization by Actinobacillus pleu-ropneumoniae ghosts: characterization of a genetically inactivated vaccine. Journal of Biotechnology 83: 161–72. DOI: https://doi.org/10.1016/S0168-1656(00)00310-2

Jalava K, Eko F O, Riedmann E and Lubitz W. 2003. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Review of Vaccines 2: 45–51. DOI: https://doi.org/10.1586/14760584.2.1.45

Jawale C V and Lee J H. 2014. Characterization of adaptive immune responses induced by a new genetically inactivated Salmonella Enteritidis vaccine. Comparative Immunology, Microbiology and Infectious Diseases 37: 159–67. DOI: https://doi.org/10.1016/j.cimid.2014.05.001

Jechlinger W, Szostak M, Witte A and Lubitz W. 1999. Altered temperature induction sensitivity of the lambda PR/cI857 system for controlled gene E-expression in Escherichia coli. FEMS Microbiology Letters 173: 347–52. DOI: https://doi.org/10.1111/j.1574-6968.1999.tb13524.x

Jechlinger W, Szostak M and Lubitz W. 1998. Cold-sensitive Elysis systems. Gene 218: 1–7. DOI: https://doi.org/10.1016/S0378-1119(98)00405-3

Kloos D U, Stratz M, Guttler A, Steffan R J and Timmis K N. 1994. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. Journal of Bacteriology 176: 7352–61. DOI: https://doi.org/10.1128/jb.176.23.7352-7361.1994

Kudela P, Paukner S, Mayr U B, Cholujova D, Schwarczova Z and Sedlak J. 2005. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. Journal of Immunotherapy 28:136–43. DOI: https://doi.org/10.1097/01.cji.0000154246.89630.6f

Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr U B and Lubitz W. 2010. The bacterial ghost platform system: production and applications. Bioengineered Bugs 1: 326–36. DOI: https://doi.org/10.4161/bbug.1.5.12540

Lubitz W, Witte A, Eko F O, Kamal M, Jechlinger W, Brand E, Marchart J, Haidinger W, Huter V, Felnerova D, Stralis-Alves N, Lechleitner S, Melzer H, Szostak M P, Resch S, Mader H, Kuen B, Mayr B, Mayrhofer P, Geretschläger R, Haslberger A and Hense A.1999. Extended recombinant bacterial ghost system. Journal of Biotechnology 73: 261–73. DOI: https://doi.org/10.1016/S0168-1656(99)00144-3

Mader H J, Szostak M P, Hensel A, Lubitz W and Haslberger A G. 1997. Endotoxicity does not limit the use of bacterial ghosts as candidate vaccine. Vaccine 15: 195–02. DOI: https://doi.org/10.1016/S0264-410X(96)00141-7

Marchart J, Dropmann G, Lechleitner S, Schlapp T, Wanner G, Szostak M P and Lubitz W. 2003. Pasteurella multocida- and Pasteurella haemolytica-ghosts: new vaccine candidates. Vaccine 21: 3988–97. DOI: https://doi.org/10.1016/S0264-410X(03)00383-9

Mayr U B, Walcher P, Azimpour C, Riedmann E, Haller C and Lubitz W. 2005. Bacterial ghosts as antigen delivery vehicles. Advanced Drug Delivery Reviews 57: 1381–91. DOI: https://doi.org/10.1016/j.addr.2005.01.027

Mayrhofer P, Tabrizi CA, Walcher P, Haidinger W, Jechlinger W and Lubitz W. 2005. Immobilization of plasmid DNA in bacterial ghosts. Journal of Controlled Release 102: 725–35. DOI: https://doi.org/10.1016/j.jconrel.2004.10.026

Paukner S, Kohl G, Jalava K and Lubitz W. 2003. Sealed bacterial ghosts –novel targeting vehicles for advanced drug delivery of water-soluble substances. Journal of Drug Targeting 11:151–61. DOI: https://doi.org/10.1080/10611860310001593366

Paukner S, Kohl G and Lubitz W. 2004. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco–2 cells. Journal of Controlled Release 94: 63–74. DOI: https://doi.org/10.1016/j.jconrel.2003.09.010

Paukner S, Kudela P, Kohl G, Schlapp T, Friedrichs S and Lubitz W. 2005. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in mac-rophages. Molecular Therapy 11: 215–23. DOI: https://doi.org/10.1016/j.ymthe.2004.09.024

Riedmann E, Kyd J, Smith A, Gomez-Gallego S, Jalava K, Cripps A and Lubitz W. 2003. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghost-a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunology and Medical Microbiology 37: 185–92. DOI: https://doi.org/10.1016/S0928-8244(03)00070-1

Ronchel MC, Molina A, Witte W, Lubitz S, Molin JL and Ramos C. 1998. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Applied Environmental Microbiology 64: 4904–11. DOI: https://doi.org/10.1128/AEM.64.12.4904-4911.1998

Szostak M P, Auer T and Lubitz W. 1993. Immune response against recombinant bacterial ghosts carrying HIV-1 reverse transcriptase. Vaccine 93: 419–25.

Szostak M P, Hensel A, Eko F O, Klein R., Auer T, Mader H, Haslberger A, Bunka S, Wanner G and Lubitz W. 1996. Bacterial ghosts: non-living candidate vaccines. Journal of Biotechnology 44: 161–70. DOI: https://doi.org/10.1016/0168-1656(95)00123-9

Szostak M P and Lubitz W. 1991. Recombinant bacterial ghosts as multivaccine vehicles. In: Ginsberg, H S, Brown, F, Chanock, R M, Lerner, RA (Eds). Modern approaches to new a vaccines including prevention of AIDS. Vaccines, Cold Spring Harbor Laboratory Press, New York 91: 409–14.

Trombetta E S and Mellman I. 2005. Cell biology of antigen pro-cessing in vitro and in vivo. Annual Review of Immunology 23: 975–1028. DOI: https://doi.org/10.1146/annurev.immunol.22.012703.104538

Truppe M, Howorka S, Schroll G, Lechleitner S, Kuen B, Resch S and Lubitz W. 1997. Biotechnological applications of recombinant slayer proteins rSbsA and rSbsB from Bacillus stearothermophilusPV72. FEMS Microbiology Reviews 20: 47–98. DOI: https://doi.org/10.1111/j.1574-6976.1997.tb00304.x

Vinod N, Oh S, Kim S, Choi C W, Kim S C and Jung C H. 2014. Chemically induced Salmonella enteritidis ghosts as a novel vaccine candidate against virulent challenge in a rat model. Vaccine 32: 3249–55. DOI: https://doi.org/10.1016/j.vaccine.2014.03.090

Witte A, Wanner G, Sulzner M and Lubitz W. 1992. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Archives of Microbiology 157: 381–88. DOI: https://doi.org/10.1007/BF00248685

Downloads

Submitted

2015-12-17

Published

2015-12-17

Issue

Section

Review Article

How to Cite

HUSSAIN, I., RAJKHOWA, S., HASIN, D., & IQBAL, S. (2015). Bacterial ghosts and their potential future applications-A mini review. The Indian Journal of Animal Sciences, 85(12), 1283–1288. https://doi.org/10.56093/ijans.v85i12.54361
Citation