Staphylococcus aureus: significance, control and rapid detection across milk chain
505 / 254
Keywords:
Dairy, Pathogen detection, Food-poisoning, Food-borne illness, Food safety, Mastitis, Milk, Staphylococcus aureus, Antimicrobial resistanceAbstract
Staphylococcus aureus is a major pathogen of public health concern with dominant role in food poisoning outbreaks, nosocomial and community-acquired infections, and also in bovine mastitis. Milk being a rich nutritious source for growth and proliferation of pathogenic species is prone to bacterial contamination, which can lead to spoilage and food poisoning. Toxin production, heat resistance, biofilm formation, antibiotic and lysozyme resistance are among the characteristics that contribute to S. aureus pathogenicity. S. aureus and its enterotoxins in food remains a daunting challenge, despite global efforts towards its mitigation. There is a need for rapid and cost-effective on-site detection of S. aureus in milk to prevent its transmission. The article outlines the significance of S. aureus in milk chain, its ability to adapt to environmental stresses, possible mitigation and rapid detection strategies; that may help to curtail its presence in milk chain and linked food poisoning episodes; besides ensuring food quality and consumer safety. Management of S. aureus and its multi drug resistant forms in milk chain will help to secure human and animal health, besides ensuring effective functioning of un-interrupted global food supply chain.
References
Abdi RD, Gillespie BE, Vaughn J, Merrill C, Headrick SI, Ensermu DB, D’Souza DH, Agga GE, Almeida RA, Oliver SP, Dego OK (2018) Antimicrobial resistance of Staphylococcus aureus isolates from dairy cows and genetic diversity of resistant isolates. Foodborne Pathog Dis 15(7): 449-458.
Abouelkhair MA, Bemis DA, Giannone RJ, Frank LA, Kania SA (2018) Characterization of a leukocidin identified in Staphylococcus pseudintermedius. PloS One 13(9): e0204450.
Abril AG, Villa, TG, Barros-Velázquez J, Cañas B, Sánchez-Pérez A, Calo-Mata P, Carrera M (2020) Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins 12(9): 537.
Acton DS, Plat-Sinnige MJ, van Wamel W, de Groot N, van Belkum A (2009) Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis 28(2): 115–127. doi: 10.1007/s10096-008-0602-7 PMID:18688664.
Alreshidi MM, Dunstan RH, Macdonald MM, Smith ND, Gottfries J, Roberts TK (2015) Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J Proteomics 121: 44-55.
Anderson CB, Witter LD (1982) Glutamine and proline accumulation by Staphylococcus aureus with reduction in water activity. Appl Environ Microbiol 43(6):1501-3.
Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on Log-phase mRNA turnover. J Bacteriol 188(19): 6739-6756.
Aqib AI, Ijaz M, Farooqi SH, Raza A (2018) Dairy Staphylococcus aureus: epidemiology, drug susceptibilities, drug modulation, and preventive measures. In Staphylococcus aureus. Intech Open. Doi:http://dx.doi.org/10.5772/intechopen.74552.
Aqib AI, Ijaz M, Shoaib M, Muzammil I, Hussain HI, Zaheer T, Naseer MA (2021) Staphylococcus aureus and dairy udder. In Staphylococcus aureus. Intech Open. Doi: 10.5772/intechopen.95864.
Argaw S, Addis M (2015) A review on staphylococcal food poisoning. Food Sci Quality Management 40: 59-71.
Asli A, Rouillette E, Ster C, Ghinet MG, Brzezinski R, Lacasse P, Jacques M, Malouin F (2017) Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PLoS One12: e0176988.
Assis BS, Germon P, Silva AM, Even S, Nicoli JR, Le Loir Y (2015) Lactococcus lactisV7 inhibits the cell invasion of bovine mammary epithelial cells by Escherichia coli and Staphylococcus aureus. Benef Microbes 6: 879-886.
Ayele Y, Gutema FD, Edao BM, Girma R, Tufa TB, Beyene TJ et al (2017) Assessment of Staphylococcus aureus along milk value chain and its public health importance in Sebeta, Central Oromia, Ethiopia. BMC Microbiol 17: 141.
Basanisi MG, La Bella G, Nobili G, Franconieri I, La Salandra G (2017) Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol 62: 141-6.
Bera A, Herbert S, Jakob A, Vollmer W, Gotz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55(3): 778-787.
Bharathy S, Gunaseelan L, Porteen K, Bojiraj M (2015) Prevalence of Staphylococcus aureus in raw milk: Can it be a potential public health threat. Int J Advan Res 3(2): 801-806.
Boswihi SS, Udo EE (2018) Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. Curr Med Res Pract 8(1): 18-24.
Bowman L, Zeden MS, Schuster CF, Kaever V, Gründling A (2016) New insights into the cyclic di-Adenosine monophosphate (c-Di-AMP) degradation pathway and the requirement of the cyclic dinucleotide for acid stress resistance in Staphylococcus aureus. J Biol Chem 291(53): 26970–86.
Cai R, Zhang Z, Chen H, Tian Y, Zhou N (2021) A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch. Sens. Actuators B Chem 326: 128842.
Chaibenjawong P, Foster SJ (2011) Desiccation tolerance in Staphylococcus aureus. Arch Microbiol 193: 125-135.
Chou CC, Chen LF (1997) Enterotoxin production by Staphylococcus warneri CCRC 12929, a coagulase-negative strain. J Food Prot 60(8): 923-927.
Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ (2007) Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189(3):1025-35
Cremonesi P, Pozzi F, Raschetti M, Bignoli G, Capra E, Graber H (2015) Genomic characteristics of Staphylococcus aureus strains associated with high within-herd prevalence of intra-mammary infections in dairy cows. J Dairy Sci 98: 6828–6838.
da Silva Abreu AC, Matos LG, da Silva Cândido TJ, Barboza GR, de Souza VVMA, Nuñez KVM, Silva NCC (2021) Antimicrobial resistance of Staphylococcus spp. isolated from organic and conventional Minas Frescal cheese producers in São Paulo, Brazil. J Dairy Sci 104(4): 4012-4022.
de Oliveira Calsolari RA, Pereira VC, Araujo JP, de Souza da Cunha MLR (2011) Determination of toxigenic capacity by reverse transcription polymerase chain reaction in coagulase negative Staphylococci and Staphylococcus aureus isolated from newborns in Brazil. Microbiol Immunol 55: 394–407 10.1111/j.1348-0421.2011.00336.x
Donkor ES, Kotey FC (2020) Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for antibiotic prophylaxis and surveillance. Infectious Dis Res Treatment 13: 117863372097658.
Dzioba-Winogrodzki J, Winogrodzki O. Krulwich TA, Boin MA, Dibrov P (2009) The Vibrio cholerae Mrp system: Cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host. J Mol Microbio Biotech 16(3-4):176–86.
EC (European Commission) (1992) Council Directive 92/46/EEC. Laying down the health rules for the production and placing on the market of raw milk, heat treated milk and milk based products. Online. Available at https://eur-lex.europa.eu/legal content/EN/TXT/PDF/?uri=CELEX:31992L0046&from=EN Accessed March 26, 2021.
Fagundes H Oliveira CAF (2004) Staphylococcus aureus intra-mammary infections and its implications in public health. Cienc Rural 34: 1315-1320.
FDA, Philippines (2013) Revised guidelines for the assessment of microbiological quality of processed foods. Department of Health, Food and Drug Administration, FDA circular no. 2013-010. Online available at Accessed March 27, 2021.
Flannagan RS, Kuiack RC, McGavin MJ, Heinrichs DE (2018) Staphylococcus aureus uses the GraXRS regulatory system to sense and adapt to the acidified phagolysosome in macrophages. mBio 9(4): e01143-18.
Fletcher S, Boonwaat L, Moore T, Chavada R, Conaty S (2015) Investigating an outbreak of staphylococcal food poisoning among travellers across two Australian states. Western Pac Surveill Research J 6(2): 17.
Foster TJ, Geoghegan JA (2015) Staphylococcus aureus. Mol Med Microbio 655–674.
Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion The many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12: 49–62.
FSANZ (Food Standards Australia New Zealand (2018) In. Compendium for microbiological criteria for food-Dairy Products 32-38 Online available at https://www.foodstandards.gov.au/publications/Documents/Compedium%20of%20Micr biological%20Criteria/Compendium_revised-Sep%202018.pdf Accessed March 27, 2021
FSSR (2017) Revised standards for milk and milk products. In The Gazette of India, extraordinary Part-III, section 4 Published by Food Safety and Standards Authority of India on October 12, 2017. Online available at https://fssai.gov.in/upload/uploadfiles/files/Gazette_Notification_Milk_Products_24_10 2017.pdf. Accessed March 27, 2021.
Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho GS, Kabisch J, Bohnlein C, Franz CM (2020) Microbial quality and safety of milk and milk products in the 21st century. Comprehensive Rev Food Sci Food Safety 19(4): 2013-2049.
Gill JPS, Joshi DV and Kwatra MS (1994a) Qualitative bacteriological survey of milk and milk products with special reference to Staphylococcus aureus. J Dairy Sci 47: 8.
Gill JPS, Joshi DV and Kwatra MS (1994b) Biotyping of Staphylococcus aureus strain isolated from food of animal origin. Indian J Appl Res 64(7): 668-671.
Giri AK, Shrman K, Jamra MS, Prajapati BK (2020) A review on mastitis in dairy animals. Int J Curr Microbiol App Sci 9: 1844-1852.
Girma K, Tilahun Z, Haimanot D (2014) Review on milk safety with emphasis on its public health. World J Dairy Food Sci. 9(2):166-83.
Gomes F, Martins N, Ferreira IC, Henriques M (2019) Anti-biofilm activity of hydromethanolic plant extracts against Staphylococcus aureus isolates from bovine mastitis. Heliyon 5(5): e01728.
Grosser MR, Elyse P, Thurlow LR, Dillon MM, Cooper VS, Kawula TH, Richardson AR (2018) Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLOS Pathog 14(3):e1006907.
Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551-1557.
Hennekinne JA (2018) Staphylococcus aureus as a Leading Cause of foodborne outbreaks worldwide. In. Staphylococcus aureus,
Academic Press Publisher129-146.
Hillerton JE, Berry EA (2004) Quality of the milk supply: European regulations versus practice. In NMC Annual Meeting Proceedings 207: 214.
Hu Y, Sun Y, Gu J, Yang F, Wu S, Zhang C, Wang S (2021) Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chem 129481.
Igimi S, Kawamura S, Takahashi E, Mitsuoka T (1989) Staphylococcus felis, a New Species from Clinical Specimens from Cats. Int J Syst Bacteriol 39: 373-377.
IS 1165: 2002, BIS (Bureau of Indian Standards). Specification for milk powder. Fifth revision reaffirmed in 2009, 2012 and 2018 New Delhi, India.
IS 14433: 2007, BIS (Bureau of Indian Standards). Specification for infant milk substitute. First revision reaffirmed in 2012 and 2018 New Delhi, India.
IS 1656: 2007, BIS (Bureau of Indian Standards). Specification for milk cereal based complementary foods. Fourth revision reaffirmed in 2009, 2012 and 2018 New Delhi, India.
IS 1806: 2018, BIS (Bureau of Indian Standards). Specification for malted milk food. Second revision New Delhi, India.
Iwano H, Inoue Y, Takasago T, Kobayashi H, Furusawa T, Taniguchi K, Fujiki J, Yokota H, Usui M, Tanji Y, Hagiwara K, Higuchi H, Tamura Y (2018) Bacteriophage ΦSA012 has a broad host range against Staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology 7(1): 8.
Johler S, Tichaczek-Dischinger PS, Rau J, Sihto HM, Lehner A, Adam M, Stephan R. (2013) Outbreak of Staphylococcal food poisoning due to SEA-producing Staphylococcus aureus. Foodborne Patho Dis 10(9): 777-781.
Joshi LR, Tiwari A, Devkota SP, Khatiwada S, Paudyal S, Pande KR (2014) Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in dairy farms of Pokhara, Nepal. Int J Vet Sci Res 3(2): 87-90.
Jusko M, Potempa J, Kantyka T, Bielecka E, Miller HK, Kalinska M, Dubin G, Garred P, Shaw LN, Blom AM (2014) Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 6: 31–46.
Kashani S, Alvandi AH, Abiri R (2020) Diagnostic values of multiplex loop-mediated isothermal amplification and multiplex polymerase chain reaction for detection of methicillin resistant Staphylococcus aureus. Jundishapur J Microbiol 13(6): e96682.
Kashif A, McClure JA, Lakhundi S, Pham M, Chen S, Conly JM, Zhang, K (2019) Staphylococcus aureus ST398 Virulence is associated with factors carried on prophage á¶²Sa3. Front Microbio 10: 2219.
Khairullah AR, Sudjarwo SA, Effendi MH, Harijani N, Tyasningsih W, Rahmahani et al (2020) A review of methicillin-resistant Staphylococcus aureus (MRSA) on milk and milk products: public health importance. Sys Rev Pharm 11(8): 59-69.
Kong C, Neoh H, Nathan S (2016) Targeting Staphylococcus aureus Toxins: A potential form of anti-virulence therapy. Toxins 8: 72.
Kosecka-Strojek M, Buda A, Międzobrodzki J (2018) Staphylococcal ecology and epidemiology. In Pet-To-Man Travelling Staphylococci Academic Press pp-11-24.
Kuiack RC, Veldhuizen RA, McGavin MJ (2020) Novel Functions and Signaling Specificity for the GraS sensor kinase of Staphylococcus aureus in response to acidic pH. J Bacteriol 202: 22.
Kwiatek M, Parasion S, Mizak L, Gryko, R, Bartoszcze, M, Kocik J (2012) Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol 157(2):225-234.
Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbio Rev 31(4):e00020-18.
Liu S, Wang B, Sui Z, Wang Z, Li L, Zhen X, Zhou G (2021) Faster Detection of Staphylococcus aureus in milk and milk powder by flow cytometry. Foodborne Patho Dis doi.org/10.1089/fpd.2020.2894.
McCormack MG, Smith AJ, Akram AN, Jackson M, Robertson D, Edwards G (2015) Staphylococcus aureus and the oral cavity: an overlooked source of carriage and infection? Am J Infect Control 43:35-37.
MedveÄová A, ValÃk Ľ (2012) Staphylococcus aureus: Characterisation and quantitative growth description in milk and artisanal raw milk cheese production. In-Tech, 4: 71-102 Doi: 10.5772/48175.
Merghni A, Noumi E, Haddad O, Dridi N, Panwar H, Ceylan O, Mastouri M, Mejd S (2018) Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globules essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microbial Pathogenesis 118: 74-80.
Miao J, Chen L, Wang J, Wang W, Chen D, Li L, Li B, Deng Y, Xu Z (2017) Current methodologies on genotyping for nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 107: 17 28.
Ming T, Geng L, Feng Y, Lu C, Zhou J, Li Y, Su X (2019) iTRAQ-based quantitative proteomic profiling of Staphylococcus aureus under different osmotic stress conditions. Front Microbio 10: 1082.
Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Lee JC (2015) Staphylococcus aureus colonization of the mouse gastrointestinal tract is modulated by wall teichoic acid, capsule, and surface proteins. PLoS Pathog, 11(7): e1005061.
Montanari C, Serrazanetti DI, Felis G, Torriani S, Tabanelli G, Lanciotti R, Gardini F (2015) New insights in thermal resistance of staphylococcal strains belonging to the species Staphylococcus epidermidis, Staphylococcus lugdunensis and Staphylococcus aureus. Food Control 50: 605-612.
Mordmuang A, Brouillette E, Voravuthikunchai SP, Malouin F (2019) Evaluation of a Rhodomyrtus tomentosa ethanolic extract for its therapeutic potential on Staphylococcus aureus infections using in-vitro and in-vivo models of mastitis. Vet Res 50(1): 1 11.
Mukherji R, Prabhune A (2015) Possible correlation between bile salt hydrolysis and AHL deamidation: Staphylococcus epidermidis RM1, a potent quorum quencher and bile salt hydrolase producer. Appl Biochem Biotechnol 176(1):140–50.
Murdoch DR, Greenlees RL (2004) Rapid identification of Staphylococcus aureus from BacT/ALERT blood culture bottles by direct Gram stain characteristics. J Clin Patho 57(2): 199-201.
Murdoch FE, Sammons RL, Chapple ILC (2004) Isolation and characterization of subgingival staphylococci from periodontitis patients and controls. Oral diseases 10(3): 155-162.
Nagasawa Y, Kiku Y, Sugawara K, Hirose A, Kai C, Kitano N, Hayashi T (2019) Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet Res 15(1): 1-14.
Namvar AE, Bastarahang S, Abbasi N, Ghehi GS, Farhadbakhtiarian S, Arezi P, Chermahin SG (2014) Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hyg Infect Control 9(3): 1-10.
Necidová L, Bursová Å , HaruÅ¡tiaková, D, BogdanoviÄová K, LaÄanin I (2019) Effect of heat treatment on activity of staphylococcal enterotoxins of type A, B, and C in milk. J Dairy Sci 102(5): 3924-3932.
Omotoyinbo OV, Omotoyinbo BI (2017) Effect of Varying NaCl Concentrations on the growth curve of Escherichia coli and Staphylococcus aureus Cell Biol 4(5): 31-34.
Otto M (2014) Phenol-soluble modulins. Int J Med Microbiol 304: 164–169.
Pal M, Kerorsa GB, Marami LM, Kandi V (2020) Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of Staphylococcus aureus: a comprehensive review. Am J Public Health 8(1): 14-21.
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Puniya AK (2020) Gastrointestinal stress as innate defense against microbial attack. J Appl Microbiol 130: 1035-1061.
Pi B, Yu M, Chen Y, Yu Y, Li L (2009) Distribution of the ACME-ArcA gene among meticillin resistant Staphylococcus haemolyticus and identification of a novel Ccr allotype in ACME-ArcA-positive isolates. J Med Microbiol 58(6): 731–36.
Procopio TF, Moura MC, Bento EFL, Soares T, Coelho LCBB, Bezerra RP, Mota RA, Porto ALF, Paiva PMG, Napoleão TH (2019) Looking for alternative treatments for bovine and caprine mastitis: Evaluation of the potential of Calliandra surinamensis leaf pinnulae lectin (CasuL), both alone and in combination with antibiotics. Open Microbiol J 8(11): e809.
Pu W, Su Y, Li J, Li C, Yang Z, Deng HP, et al. (2014) High incidence of oxacillin-susceptible mecA positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PloS One 9(2): e88134.
Public Health England (PHE)-National Health Service (NHS) (2020) UK standards for microbiology investigations Identification of Staphylococcus species, Micrococcus species and Rothia species. 07(4): 1-26.
Rainard P, Foucras G (2018) A critical appraisal of probiotics for mastitis control. Front Vet Sci 5: 251.
Sannasiddappa TH, Lund PA, Clarke SR (2017) In Vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front Microbiol 8: 1581.
Sannasiddappa TH, Hood GA, Hanson KJ, Costabile A, Gibson GR, Clarke SR (2015) Staphylococcus aureus MnhF mediates cholate efflux and facilitates survival under human colonic conditions. Infect Immun 83(6): 2350-57.
Sashihara T, Kimura H, Higuchi T, Adachi A, Matsusaki H, Sonomoto K, Ishizaki A (2000) A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci Biotechnol Biochem 64(11): 2420e8.
Shah NB, Osmon DR, Fadel H, Patel R, Kohner PC, Steckelberg JM,
Mabry T, Berbari EF (2010) Laboratory and Clinical Characteristics of Staphylococcus lugdunensis Prosthetic Joint Infections. J Clin Microbiol 48(5):1600 1603.
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill J PS, Panwar H (2018) Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci 4: 237.
Sharma C, Singh BP, Thakur N, Gulati S, Gupta S, Mishra SK, Panwar H (2017) Antibacterial effects of Lactobacillus isolates of curd and human milk origin against food-borne and human pathogens. 3 Biotech 7:31.
Sharma M, Anand SK (2002) Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol 19: 627–636.
Shebuski JR, Vilhelmsson O, Miller KJ (2000) Effects of growth at low water activity on the thermal tolerance of Staphylococcus aureus. J Food Prot 63(9): 1277-1281.
Shebuski JR, Vilhelmsson O, Miller KJ (2000) Effects of growth at low water activity on the thermal tolerance of Staphylococcus aureus. J Food Prot 63(9): 1277-1281.
Sheet OH, Grabowki NT, Klein G, Abdulmawjood A et al (2016) Development and validation of a loop mediated isothermal amplification (LAMP) assay for the detection of Staphylococcus aureus in bovine mastitis milk samples. Mol Cell Probes 30(5): 320-325.
Singh N, Sharma C, Gulhane RD, Rokana N, Singh BP, Puniya AK (2018) Inhibitory effects of lactobacilli of goat's milk origin against growth and biofilm formation by pathogens: An in vitro study. Food Biosci 22: 129-138.
Sinha K, Thombare NN, Mondal B (2014) Sub-clinical mastitis in dairy animals: incidence, economics, and predisposing factors. Sci World J 1-4.
Son SJ, Park MR, Ryu SD, Maburutse BE, Oh NS, Park JS, Oh S, Kim Y (2016) In vivo screening platform for bacteriocins using Caenorhabditis elegans to control mastitisâ€causing pathogens. J Dairy Sci 99: 8614–8621.
Sospedra I, Soriano JM, Mañes J (2013) Enterotoxinomics: the omic sciences in the study of staphylococcal toxins analyzed in food matrices. Food Res Int 54: 1052–1060.
Tamarapu S, McKILLIP JL, Drake M (2001) Development of a multiplex polymerase chain reaction assay for detection and differentiation of Staphylococcus aureus in dairy products. J Food Prot 64(5): 664-668.
Tang YW, Stratton CW (2010) Staphylococcus aureus: An old pathogen with new weapons. Clin Lab Med 30: 179-208.
Tian X, Feng J, Wang Y (2018) Direct loop-mediated isothermal amplification assay for on-site detection of Staphylococcus aureus. FEMS Microbiol Lett 365(11): fny092.
Tohoyessou MG, Mousse W, Sina H, Kona, F, Azanghadji T, Guessennd N, Baba-Moussa (2020) Toxin production and resistance of Staphylococcus species isolated from fermented artisanal dairy products in Benin.J Patho 1–12.
Udo EE, Al-Bustan M, Jacob LE, Chugh TD (1999) Enterotoxin production by coagulase negative staphylococci in restaurant workers from Kuwait City may be a potential cause of food poisoning. J Med Microbiol 48: 819–823.
Ulluwishewa D, Wang L, Pereira C, Flynn S, Cain E, Stick S, F et al (2016) Dissecting the regulation of bile induced biofilm formation in Staphylococcus aureus. Microbio 162(8):1398-1406.
Underwood WJ, Blauwiekel R, Delano ML, Gillesby R, Mischler SA, Schoell A (2015) Biology and diseases of ruminants (Sheep, Goats, and Cattle). Lab Animal Med 623–694.
Vaish M, Price-Whelan A, Reyes-Robles T, Liu J, Jereen A, Christie S, Alonzo F et al (2018) Roles of Staphylococcus aureus Mnh1 and Mnh2 antiporters in salt tolerance, alkali tolerance, and pathogenesis. J Bacteriol 200(5):1-15.
Vanzato PI, Gir E, Pimenta FC et al (2010) Does the oral cavity represent an important reservoir for MRSA in healthcare workers? J Hosp Infect 76(3): 277-278.
Vrbovská V, SedláÄek I, Zeman M, Å vec P, KovaÅ™ovic V, Å edo O, PantůÄek R. (2020) Characterization of Staphylococcus intermedius group isolates associated with animals from antarctica and emended description of Staphylococcus delphini. Microorganisms, 8(2): 204.
Walker GC, Harmon LG (1966) Thermal Resistance of Staphylococcus aureus in milk, whey, and phosphate buffer. Appl Microbiol 14(4): 584–590.
Wallin-Carlquist N, Marta D, Borch E, Radstrom P (2010) Prolonged expression and production of Staphylococcus aureus enterotoxin A in processed pork meat. Int J Food Microbiol 141: 69-74 PMID: 20406714.
Wang W, Lin X, Jiang T, Peng Z, Xu J, Yi L, Baloch Z (2018) Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy Cows with mastitis in Beijing, China. Front Microbio 9: 1123.
Wang XY, Yang JY, Wang YT, Zhang HC, Chen ML, Yang T, Wang JH (2021) M13 phage based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta 221:121668.
Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4: 278-286.
Worthing K, Pang S, Trott DJ, Abraham S, Coombs GW, Jordan D, Norris J (2018) Characterisation of Staphylococcus felis isolated from cats using whole genome sequencing. Vet Microbiol 222: 98–104.
Xie G, Zhou D, Zhao G, Feng X, Aguilar Z P, Xu H (2021) Recombinase aided amplification with photoreactive DNA-binding dye for rapid detection of viable Staphylococcus aureus. LWT-Food Sci Technol135: 110249.
Xihong Z, Li Y, Park M, Wang J, Zhang Y, He X, Forghani F, Wang L et al (2013) Loop mediated isothermal amplification assay targeting the fem A gene for rapid detection of Staphylococcus aureus from clinical and food samples. J Microbiol Biotechnol 23(2): 246-250.
Yang Y, Wu T, Xu LP, Zhang X (2021) Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. Talanta 226:122132.
Yaniarti MN, Amarantini C, Budiarso TY (2017) The effect of temperature and pasteurization time on Staphylococcus aureus isolates from dairy products. 8th International Conference on Global Resource Conservation (ICGRC 2017) AIP Conf.
Yao S, Zhao C, Shang M, Li J, Wang J (2021) Enzyme-free and label-free detection of Staphylococcus aureus based on target-inhibited fluorescence signal recovery. Food Chem Toxicol 150: 112071.
Yehia HM, Ismail EA, Hassan ZK, Al-masoud AH, Al-Dagal MM (2019) Heat resistance and presence of genes encoding staphylococcal enterotoxins evaluated by multiplex-PCR of Staphylococcus aureus isolated from pasteurized camel milk. Bio Sci Rep 39: BSR20191225.
Yu J, Zhang Y, Zhang Y, Li H, Yang H, Wei H (2016) Sensitive and rapid detection of Staphylococcus aureus in milk via cell binding domain of lysin. Biosens Bioelectron 77: 366–371.
Zeinhom M, Abed A (2021) Prevalence, characterization, and control of Staphylococcus aureus isolated from raw milk and Egyptian soft cheese. J Vet Med Res 27(2): 152-160.
Zhang S, Maddox CW (2000) Cytotoxic Activity of Coagulase-Negative Staphylococci in Bovine Mastitis. Infection and Immunity 68(3): 1102-1108.
Zhou C, Bhinderwala F, Lehman MK, Thomas VC, Chaudhari SS, Yamada KJ, Foster KW, Powers R, Kielian T, Fey PD (2019) Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Patho 15(1): e1007538.
Zhou C, Fey PD (2020) The acid response network of Staphylococcus aureus. Curr Opin Microbiol 55: 67-73
 Arundhati Ganesh Wandhare
								Arundhati Ganesh Wandhare
							 Guru Angad Dev Veterinary and Animal Sciences University
									Guru Angad Dev Veterinary and Animal Sciences University