Oral Administration of Acidophilus Milk Supplemented with Calcium Pyruvate Modulates some Biochemical Parameters and Weight Gain in Rats Fed High Fat Diet


114 / 142

Authors

  • Fouad Mahmoud Fouad Elshaghabee Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt

Keywords:

Acidophilus fermented milk, calcium pyruvate, high fat diet, functional ingredients, IL-6

Abstract

This study aims to evaluate the protective effect of acidophilus milk supplemented with calcium pyruvate on reduction of obesity in rat model. For that purpose, Albino rats were randomized into three groups; rats in the first group (I, control) were fed high fat diet while rats in experimental groups were fed the same diet and orally administrated with acidophilus milk or acidophilus milk supplemented with 3 % of calcium pyruvate for rats in group III. After five weeks of intervention, levels of plasma triglycerides, cholesterol, glucose, liver markers, and IL-6 and body weight were significantly (p < 0.05) increased in rats of group I compared to rats in both experimental groups. Also, levels of plasma IL-10 were significantly increased in the experimental groups compared to rats in group I. Results of this study indicated that supplementation of acidophilus milk with calcium pyruvate could decrease the weight gain and modulate plasma triglycerides, cholesterol, glucose, liver markers, IL-6and IL-10 in rat model. Indeed, further research on the molecular mechanism of anti-obesity effect of calcium pyruvate is still needed.

References

Axelsson, L. (2004). Lactic Acid Bacteria: Classification and Physiology. In: Salminen, S. von Wright, A. and Ouwehand A. (Eds.), Lactic acid bacteria: microbiological and functional aspects. 3rd rev. and exp. ed. Marcel

Dekker, Inc., New York, pp.1-66.

Azlin, M., Jiang, T. and Savaiano, D. A. (1997). Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus. J. Dairy. Sci. 80: 1535-1547. DOI:10.3168/jds.S0022-0302(97)76083-1

Bhathena, J., Martoni, C., Kulamarva, A., Tomaro-Duchesneau, C., Malhotra, M., Paul, A., et al. (2013). Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian Hamsters. PLoS ONE 8(3): e58394.DOI: https://doi.org/10.1371/journal.pone.0058394

Cani, P.D., Bibiloni, R., Knauf. C., et al. (2008). Changes in gut microbiota control metabolic endotoxemiainduced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 57:1470–81. DOI:10.2337/db07-1403

da Silva, S.T., dos Santos, C.A. and Bressan, J.(2013). Intestinal microbiota, relevance to obesity and modulation by prebiotics and probiotics. Nutricion Hospitalaria 28: 1039-1048. DOI: 10.3305/nh.2013.28.4.6525.

Elshaghabee, F.M.F. (2016b). Impact of Karish cheese on reduction of the risk of non-alcoholic fatty liver disease in rats fed high fructose diet. Indian Journal of Dairy Science 69: 316-321. DOI: 10.5146/ijds.v69i3.55322.g24375.

Elshaghabee, F.M.F. (2017). Probiotics Food Supplement for NAFLD. J Nutr Health Food Eng 6(4): 00209. DOI: 10.15406/jnhfe.2017.06.00209

Elshaghabee, F.M.F., Bockelmann, W., Meske, D., de Vrese, M., Walte, H-G., Schrezenmeir, J. and Heller, K.J. (2016a). Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Frontiers in Microbiology 7: 1-13. DOI: 10.3389/fmicb.2016.00047

Franks, P.W. and McCarthy, M.I. (2016). Exposing the exposures responsible for type 2 diabetes and obesity. Science. 354: 69–73. DOI: 10.1126/science.aaf5094

Gong, W., Jiang, J. (2018). Effect of rope skipping combining calcium pyruvate on fat metabolism of female college students. Biomedical research. Special issue: S333-S336.

Hamad, E.M., Sato, M., Uzu, K., Yoshida, T., Higashi, S., Kawakami, H., Kadooka, Y., Matsuyama, H., Abd El-Gawad, I.A., Imaizumi, K. (2008). Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br. J. Nutr 20:3-9. DOI: 10.1017/S0007114508043808.

Hildebrandt, M.A., Hoffmann, C., Sherrill-Mix, S.A., et al. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 137:1716–1724. DOI: 10.1053/j.gastro.2009.08.042.

Hsieh, F.C., Lee, C.L., Chai, C.Y., Chen, W.T., Lu, Y.C., Wu, C.S. (2013). Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab 17:35-50.DOI: 10.1186/1743-7075-10-35.

Huang, E.Y., Leone, V.A., Devkota, S., Wang, Y., Brady, M.J., Chang, E.B. (2013). Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. JPEN Journal of parenteral and enteral nutrition 37:746–54. DOI: 10.1177/0148607113486931.

Ivy, J.L., Cortez, M.Y., Chandler, R.M., Byrne, H.K., Miller, R.H. (1994). Effect of pyruvate on the metabolism and insulin resistance of obese Zucker rats. Am J Clin Nutr 59: 331-337. DOI:10.1093/ajcn/59.2.331

Kang, Y.H., Chung, S.J., Kang, I.J., Park, J.H., Bunger, R. (2001).Intramitochondrial pyruvate attenuates hydrogen peroxideinduced apoptosis in bovine pulmonary artery endothelium. Mol Cell Biochem 216: 37-46.

Kawasaki, T., Igarashi, K., Koeda, T., Sugimoto, K., Nakagawa, K., Hayashi, S., Yamaji, R., Inui, H., Fukusato, T., Yamanouchi, T. (2009). Rats fed fructose enriched diets have characteristics of nonalcoholic hepatic steatosis. J. Nutr 139: 2067-2071.DOI:10.3945/jn.109.105858.

Kim, K.A., Gu, W., Lee, I.A., Joh, E.H., Kim, D.H. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS one. 7:e47713.DOI:https://doi.org/10.1371/journal.pone.0047713.

Li, X., Song, Y., Ma, X., Zhang, Y., Liu, X., Cheng, L., Han, D., Shi, Y., Sun, Q., Yang, C., Pan, B., Sun, Q. (2018). Lactobacillus plantarum and Lactobacillus fermentum alone or in combination regulate intestinal flora composition and systemic immunity to alleviate obesity syndrome in high-fat diet rat. Int. J. Food Sci.Technol. 53:137-146.DOI: https://doi.org/10.1111/ijfs.13567.

Pospisilik, J.A., Knauf, C., Joza, N. et al. (2007). Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131: 476-491. DOI:10.1016/j.cell.2007.08.047.

Poutahidis, T., Kleinewietfeld, M., Smillie, C., Levkovich, T., Perrotta, A., Bhela S, et al. (2013). Microbial Reprogramming Inhibits Western Diet-Associated Obesity. PLoS ONE 8(7): e68596. DOI:10.1371/journal.pone.0068596.

Sanz, Y., Rastmanesh, R. & Agostonic, C. (2013). Understanding the role of gut microbes and probiotics in obesity: how far are we? Pharmacological Research 69: 144-155. DOI:10.1016/j.phrs.2012.10.021.

Shen, W., Wolf, P.G., Carbonero, F., et al. (2014). Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. The Journal of nutrition 144:1181–1187.DOI: 10.3945/jn.114.194332.

Tanide, M., Shen J, Maeda, K., Horil, Y., Yamano, T., Fukushima, Y., Nagai, K.(2008). High-fat diet-induced obesity is attenuated by

probiotic strain Lactobacillus paracasei ST11

(NCC2461) in rats. AOASO 2:159-169. DOI: 10.1016/j.orcp.2008.04.003.

Tennyson, C.A. and Friedman, G. (2008). Microecology, obesity, and probiotics. Current Opinion in Endocrinology Diabetes and Obesity 15: 422-427. DOI: 10.1097/MED.0b013e328308dbfb.

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. DOI:10.1038/nature05414

Wang, J., Tang, H., Zhang, C., Zhao, Y., Derrien, M., Rocher, E., van-Hylckama Vlieg, J.E., Strissel, K., Zhao, L., Obin, M., Shen, J. (2015). Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. The ISME J 9:1-15. DOI: 10.1038/ismej.2014.99.

WHO. Obesity and overweight (2014). Fact sheet No 311. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/

Zarrati, M., Shidfar, F., Nourijelyani, K., Mofid, V., Hossein zadeh-Attar,

M.J., Bidad, K., Najafi, F., Gheflati, Z., Chamari, M., Salehi, E. (2013). Lactobacillus acidophilus La5, Bifidobacterium BB12, and Lactobacillus casei DN001 modulate gene expression of subset specific transcription factors and cytokines in peripheral blood mononuclear cells of obese and overweight people. Biofactor 39:633-643. DOI: 10.1002/biof.1128.

Zhang, C., Zhang, M., Pang, X., Zhao, Y., Wang, L., Zhao, L. (2012). Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. The ISME journal 6:1848–1857. DOI:10.1038/ismej.2012.27.

Downloads

Submitted

2018-12-26

Published

2019-08-27

Issue

Section

ANIMAL PRODUCTION & REPRODUCTION

How to Cite

Elshaghabee, F. M. F. (2019). Oral Administration of Acidophilus Milk Supplemented with Calcium Pyruvate Modulates some Biochemical Parameters and Weight Gain in Rats Fed High Fat Diet. Indian Journal of Dairy Science, 72(4). https://epubs.icar.org.in/index.php/IJDS/article/view/85742